Examples 5.6 – Definite Integrals of Exponentials and Logarithms

- 1. (a) Use a midpoint approximation and n = 8 subintervals to approximate the net area bounded by the graph of $f(x) = \frac{1}{x}$ and the *x*-axis on [1, 3].
 - (b) Use the FTC to find the exact value of $\int_{1}^{3} \frac{1}{x} dx$.

Solution:

(a) **STEP 1**: Divide [1, 3] into n = 8 subintervals of equal width, $\Delta x = \frac{3-1}{8} = \frac{2}{8} = \frac{1}{4}$.

STEP 2: For each $k \ge 1$, the midpoint of the *k*th subinterval $[x_{k-1}, x_k]$ is $m_k = 1 + (k - \frac{1}{2})\frac{1}{4} = 1 + \frac{k}{4} - \frac{1}{8} = \frac{7+2k}{8}$.

STEP 3: The area of the *k*th rectangle having height $f(m_k) = \frac{1}{m_k} = \frac{8}{7+2k}$ and width $\Delta x = \frac{1}{4}$ is $f(m_k) \cdot \Delta x = \frac{8}{7+2k} \cdot \frac{1}{4}$.

STEP 4: Therefore, $\int_{1}^{3} \frac{1}{x} dx \approx \left(\frac{8}{9} + \frac{8}{11} + \frac{8}{13} + \frac{8}{15} + \frac{8}{17} + \frac{8}{19} + \frac{8}{21} + \frac{8}{23}\right) \cdot \frac{1}{4} \approx 1.096325$.

(a) By the FTC, the exact value is $\int_{1}^{3} \frac{1}{x} dx = (\ln |x|)_{1}^{3} = \ln |3| - \ln |1| = \ln 3 \approx 1.098612$.

Additional note: The table below shows left-hand, midpoint, and right-hand approximations of $\int_{1}^{3} \frac{1}{x} dx$ for n = 4, 8, 100, and 1000 subintervals. Note that in this example the midpoint approximation requires "only" 100 rectangles for four decimal place accuracy.

n	Left-hand	Midpoint	Right-hand	Exact
4	1.283333	1.089755	0.950000	
8	1.186544	1.096325	1.019877	1 009612
100	1.105309	1.098597	1.091975	1.096012
1000	1.099279	1.098612	1.097945	

2. An object in rectilinear motion has velocity given by $v(t) = e^t \text{ cm/min}$. Find the displacement and the total distance traveled during the first four minutes.

Solution: Since v(t) is positive on the given interval, the displacement and total distance traveled are both equal to

$$\int_0^4 e^t dt = e^t \Big|_0^4 = e^4 - e^0 = e^4 - 1 \approx 53.6 \,\mathrm{cm}$$