Examples 5.6 - Definite Integrals of Exponentials and Logarithms

1. (a) Use a midpoint approximation and $n=8$ subintervals to approximate the net area bounded by the graph of $f(x)=\frac{1}{x}$ and the x-axis on $[1,3]$.
(b) Use the FTC to find the exact value of $\int_{1}^{3} \frac{1}{x} d x$.

Solution:

(a) STEP 1: Divide [1,3] into $n=8$ subintervals of equal width, $\Delta x=\frac{3-1}{8}=\frac{2}{8}=\frac{1}{4}$.

STEP 2: For each $k \geq 1$, the midpoint of the k th subinterval $\left[x_{k-1}, x_{k}\right]$ is $m_{k}=1+\left(k-\frac{1}{2}\right) \frac{1}{4}=1+\frac{k}{4}-\frac{1}{8}=\frac{7+2 k}{8}$.

STEP 3: The area of the k th rectangle having height $f\left(m_{k}\right)=\frac{1}{m_{k}}=\frac{8}{7+2 k}$ and width $\Delta x=\frac{1}{4}$ is $f\left(m_{k}\right) \cdot \Delta x=\frac{8}{7+2 k} \cdot \frac{1}{4}$.

STEP 4: Therefore, $\int_{1}^{3} \frac{1}{x} d x \approx\left(\frac{8}{9}+\frac{8}{11}+\frac{8}{13}+\frac{8}{15}+\frac{8}{17}+\frac{8}{19}+\frac{8}{21}+\frac{8}{23}\right) \cdot \frac{1}{4} \approx 1.096325$.
(a) By the FTC, the exact value is $\int_{1}^{3} \frac{1}{x} d x=\left.(\ln |x|)\right|_{1} ^{3}=\ln |3|-\ln |1|=\ln 3 \approx 1.098612$.

Additional note: The table below shows left-hand, midpoint, and right-hand approximations of $\int_{1}^{3} \frac{1}{x} d x$ for $n=4,8,100$, and 1000 subintervals. Note that in this example the midpoint approximation requires "only" 100 rectangles for four decimal place accuracy.

n	Left-hand	Midpoint	Right-hand	Exact
4	1.283333	1.089755	0.950000	
8	1.186544	1.096325	1.019877	$1.098612 \ldots$
100	1.105309	1.098597	1.091975	
1000	1.099279	1.098612	1.097945	

2. An object in rectilinear motion has velocity given by $v(t)=e^{t} \mathrm{~cm} / \mathrm{min}$. Find the displacement and the total distance traveled during the first four minutes.

Solution: Since $v(t)$ is positive on the given interval, the displacement and total distance traveled are both equal to

$$
\int_{0}^{4} e^{t} d t=\left.e^{t}\right|_{0} ^{4}=e^{4}-e^{0}=e^{4}-1 \approx 53.6 \mathrm{~cm}
$$

