Examples 5.6 - Definite Integrals of Exponentials and Logarithms

1. (a) Use a midpoint approximation and $n=8$ subintervals to approximate the net area bounded by the graph of $f(x)=\frac{1}{x}$ and the x-axis on $[1,3]$.
(b) Use the FTC to find the exact value of $\int_{1}^{3} \frac{1}{x} d x$.

Solution:

(a) STEP 1:

STEP 2:

STEP 3:

STEP 4:
(b)

Additional note: The table below shows left-hand, midpoint, and right-hand approximations of $\int_{1}^{3} \frac{1}{x} d x$ for $n=4,8,100$, and 1000 subintervals. Note that in this example the midpoint approximation requires "only" 100 rectangles for four decimal place accuracy.

n	Left-hand	Midpoint	Right-hand	Exact
4	1.283333	1.089755	0.950000	
8	1.186544	1.096325	1.019877	$1.098612 \ldots$
100	1.105309	1.098597	1.091975	
1000	1.099279	1.098612	1.097945	

2. An object in rectilinear motion has velocity given by $v(t)=e^{t} \mathrm{~cm} / \mathrm{min}$. Find the displacement and the total distance traveled during the first four minutes.

Solution:

