## Homework 5.5 - Derivatives and Antiderivatives of Exponentials and Logarithms

1. (1 pt) alfredLibrary/AUCI/chapter5/lesson5/logchain1pet.pg

Recall, $\frac{d}{d t}(\ln t)=\frac{1}{t}$, but if $y$ is a function of $t$, then $\frac{d}{d t}(\ln y)=$ $\frac{1}{y} \cdot y^{\prime}=\frac{y^{\prime}}{y}$. Use this "short cut" to find each derivative.
(a) $\frac{d}{d t}(\ln (t-10))=$ $\qquad$
(b) $\frac{d}{d t}(\ln (5 t+7))=$ $\qquad$
(c) $\frac{d}{d t}\left(\ln \left(3 t^{2}+9 t+9\right)\right)=$ $\qquad$
2. (1 pt) alfredLibrary/AUCI/chapter5/lesson5/logchain2pet.pg
(a) If $f(x)=\sqrt{15+\ln (x)}$, then $f^{\prime}(3)=$ $\qquad$
(b) If $f(x)=x(3.5)^{x}$, then $f^{\prime}(x)=$ $\qquad$
3. ( $\mathbf{1} \mathrm{pt}$ ) alfredLibrary/AUCI/chapter5/esson5/graphoffunction1pet.pg

Let $f(x)=5 x^{2} \ln (x)$, for $x>0$.
(a) The derivative of $f$ is $f^{\prime}(x)=$ $\qquad$
(b) The critical numbers of $f$ are $x=$ $\qquad$
4. (1 pt) alfredLibrary/AUCI/chapter5/lesson5/integralofreciprocal2pet. Evaluate the indefinite integral. You must first rewrite and simplify the integrand!

$$
\int \frac{3-8 x e^{8 x}}{x} d x=
$$

$\qquad$
5. ( 1 pt ) alfredLibrary/AUCI/chapter5/lesson5/integralofreciprocal1pet: Evaluate the definite integral. You must first rewrite and simplify the integrand!

$$
\int_{1}^{e} \frac{5 x^{2}+6 x+9}{x} d x=
$$

