Activity 5.5^{1‡} – Derivatives and Antiderivatives of Exponentials and Logarithms

FOR DISCUSSION: State the derivative formulas for the natural and base b log functions. State the derivative formulas for the exponential functions in base e and b. State the integral formulas for the exponential functions in base e and b. State the complete power rule for integration.

1. Compute the following.

(a)
$$\frac{d}{dx}(\ln(x)) =$$

(b) $\frac{d}{dx}(\log_b(x)) =$

(c)
$$\frac{d}{dx} \left(\ln(2x - 10) \right) =$$

(d)
$$\frac{d}{dx} \left(\log_{10} \left(3x^2 + 9x + 7 \right) \right) =$$

(e)
$$\frac{d}{dt} \left(\left(\ln(2t+1) \right)^3 \right) =$$

(f)
$$\frac{d}{du} \left(4u^2 \ln(u) \right) =$$

¹ This activity contains new content.

[‡] This activity has supplemental exercises.

2. Compute the derivative of each function.

(a)
$$y = e^x$$

(b)
$$y = b^x$$

(c) $f(x) = 5^x$

(d)
$$A(t) = 1000(1.03)^{12t}$$

(e)
$$g(x) = \frac{10^x}{3x - 1}$$

3. Evaluate each integral.

(a)
$$\int \left(5^x - e^{5x}\right) dx$$

(b)
$$\int \frac{1-3x+4x^2}{x^2} dx$$
 (HINT: Split up the integrand into three fractions.)

4. Compute each limit.

(a)
$$\lim_{x \to +\infty} \frac{\ln(7x-8)}{\ln(4x+2)} =$$

(b)
$$\lim_{x \to 3} \frac{\ln(x^2 - 8)}{x - 3} =$$

5. When computing a derivative, we typically use a differentiation rule that corresponds to the type of the given function. For example, consider the following functions:

 $k(x) = 2^2$ $g(x) = x^2$ $h(x) = 2^x$ $f(x) = x^x$

The first three functions are already familiar to us. For each one, write down its function type and derivative.

- (a) $k(x) = 2^2$ is a ______ function. Its derivative is k'(x) = _____.
- (b) $g(x) = x^2$ is a ______ function. Its derivative is g'(x) = ______.
- (c) $h(x) = 2^x$ is an ______ function. Its derivative is h'(x) = ______.

The function $f(x) = x^x$ has a form that we have not yet encountered, namely, a variable base raised to a variable power. In the next problem, we consider a new technique that may simplify the computations needed in finding derivatives of complicated products, quotients, and powers.

- 6. (**OPTIONAL**) The following method of differentiation is called **logarithmic differentiation**:
 - Given y = f(x), apply 'ln' to both sides to get $\ln y = \ln f(x)$.
 - Expand $\ln f(x)$ using the properties of logarithms.
 - Differentiate implicitly to get $\frac{y'}{y}$.
 - Solve for y' and replace any y's on the right with f(x).
 - (a) Compute the derivative of $y = x^x$ using logarithmic differentiation.

(b) Let *n* be any real number and let $y = x^n$. Use logarithmic differentiation to prove the power rule for differentiation, $y' = nx^{n-1}$.

(c) In Examples 5.4, we expanded $y = \frac{x^3 \sqrt{4x-11}}{(1+x^2)^5}$ using properties of logarithms to get $\ln y = 3\ln x + \frac{1}{2}\ln(4x-11) - 5\ln(1+x^2)$

Use this result and logarithmic differentiation to find y'.

7. (**OPTIONAL**) In thermodynamics, *enthalpy* (*H*, in J/mol) is the total energy of a system, *entropy* (*S*, in J/mol-K) measures how evenly energy is distributed in a system, and the *constant pressure molar heat capacity* ($C_P(T)$, in J/mol-K) is the heat required to change the temperature of a substance by *T* Kelvin. For a given substance, there exist constants *a*, *b*, and *c* such that

$$C_P(T) = a + bT + \frac{c}{T^2}$$
 J/mol-K

For silica, a = 46.90, $b = 31.51 \times 10^{-3}$, and $c = -10.08 \times 10^{5}$. Find the net changes in enthalpy and entropy (as defined below) of silica as *T* increases from $T_1 = 290$ to $T_2 = 1000$.

$$\Delta H = \int_{T_1}^{T_2} C_P(T) dT = \int_{290}^{1000} \left(a + bT + \frac{c}{T^2} \right) dT =$$

$$\Delta S = \int_{T_1}^{T_2} \frac{C_P(T)}{T} dT = \int_{290}^{1000} \left(\frac{a}{T} + b + \frac{c}{T^3}\right) dT =$$