Activity $5.5^{1 \ddagger}$ - Derivatives and Antiderivatives of Exponentials and Logarithms

FOR DISCUSSION: State the derivative formulas for the natural and base blog functions.
State the derivative formulas for the exponential functions in base e and b.
State the integral formulas for the exponential functions in base e and b.
State the complete power rule for integration.

1. Compute the following.
(a) $\frac{d}{d x}(\ln (x))=$
(b) $\frac{d}{d x}\left(\log _{b}(x)\right)=$
(c) $\frac{d}{d x}(\ln (2 x-10))=$
(d) $\frac{d}{d x}\left(\log _{10}\left(3 x^{2}+9 x+7\right)\right)=$
(e) $\frac{d}{d t}\left((\ln (2 t+1))^{3}\right)=$
(f) $\frac{d}{d u}\left(4 u^{2} \ln (u)\right)=$

[^0]2. Compute the derivative of each function.
(a) $y=e^{x}$
(b) $y=b^{x}$
(c) $f(x)=5^{x}$
(d) $A(t)=1000(1.03)^{12 t}$
(e) $g(x)=\frac{10^{x}}{3 x-1}$
3. Evaluate each integral.
(a) $\int\left(5^{x}-e^{5 x}\right) d x$
(b) $\int \frac{1-3 x+4 x^{2}}{x^{2}} d x$
(HINT: Split up the integrand into three fractions.)
4. Compute each limit.
(a) $\lim _{x \rightarrow+\infty} \frac{\ln (7 x-8)}{\ln (4 x+2)}=$
(b) $\lim _{x \rightarrow 3} \frac{\ln \left(x^{2}-8\right)}{x-3}=$
5. When computing a derivative, we typically use a differentiation rule that corresponds to the type of the given function. For example, consider the following functions:
$$
k(x)=2^{2} \quad g(x)=x^{2} \quad h(x)=2^{x} \quad f(x)=x^{x}
$$

The first three functions are already familiar to us. For each one, write down its function type and derivative.
(a) $k(x)=2^{2}$ is a \qquad function. Its derivative is $k^{\prime}(x)=$ \qquad .
(b) $g(x)=x^{2}$ is a \qquad function. Its derivative is $g^{\prime}(x)=$ \qquad .
(c) $h(x)=2^{x}$ is an \qquad function. Its derivative is $h^{\prime}(x)=$ \qquad .

The function $f(x)=x^{x}$ has a form that we have not yet encountered, namely, a variable base raised to a variable power. In the next problem, we consider a new technique that may simplify the computations needed in finding derivatives of complicated products, quotients, and powers.
6. (OPTIONAL) The following method of differentiation is called logarithmic differentiation:

- Given $y=f(x)$, apply 'In' to both sides to get $\ln y=\ln f(x)$.
- Expand $\ln f(x)$ using the properties of logarithms.
- Differentiate implicitly to get $\frac{y^{\prime}}{y}$.
- Solve for y^{\prime} and replace any y^{\prime} 's on the right with $f(x)$.
(a) Compute the derivative of $y=x^{x}$ using logarithmic differentiation.
(b) Let n be any real number and let $y=x^{n}$. Use logarithmic differentiation to prove the power rule for differentiation, $y^{\prime}=n x^{n-1}$.
(c) In Examples 5.4, we expanded $y=\frac{x^{3} \sqrt{4 x-11}}{\left(1+x^{2}\right)^{5}}$ using properties of logarithms to get

$$
\ln y=3 \ln x+\frac{1}{2} \ln (4 x-11)-5 \ln \left(1+x^{2}\right)
$$

Use this result and logarithmic differentiation to find y^{\prime}.
7. (OPTIONAL) In thermodynamics, enthalpy (H, in $\mathrm{J} / \mathrm{mol}$) is the total energy of a system, entropy (S, in $\mathrm{J} / \mathrm{mol}-\mathrm{K}$) measures how evenly energy is distributed in a system, and the constant pressure molar heat capacity $\left(C_{P}(T)\right.$, in $\left.\mathrm{J} / \mathrm{mol}-\mathrm{K}\right)$ is the heat required to change the temperature of a substance by T Kelvin. For a given substance, there exist constants a, b, and c such that

$$
C_{P}(T)=a+b T+\frac{c}{T^{2}} \quad \mathrm{~J} / \mathrm{mol}-\mathrm{K}
$$

For silica, $a=46.90, b=31.51 \times 10^{-3}$, and $c=-10.08 \times 10^{5}$. Find the net changes in enthalpy and entropy (as defined below) of silica as T increases from $T_{1}=290$ to $T_{2}=1000$.

$$
\Delta H=\int_{T_{1}}^{T_{2}} C_{P}(T) d T=\int_{290}^{1000}\left(a+b T+\frac{c}{T^{2}}\right) d T=
$$

$$
\Delta S=\int_{T_{1}}^{T_{2}} \frac{C_{P}(T)}{T} d T=\int_{290}^{1000}\left(\frac{a}{T}+b+\frac{c}{T^{3}}\right) d T=
$$

[^0]: ${ }^{1}$ This activity contains new content.
 ${ }^{\ddagger}$ This activity has supplemental exercises.

