Lesson 5.4 – Logarithmic Functions

For b > 0 and $b \ne 1$, the graph of $y = b^x$ passes the horizontal line test, so the function $y = b^x$ is invertible. The inverse of $y = b^x$ is called the

Logarithm base b: $y = \log_b x$ (the power of *b* needed to produce *x*)

When b is Euler's number e, we write $y = \ln x$ instead of $y = \log_e x$ and call this the

Natural logarithm: $y = \ln x$ (the power of *e* needed to produce *x*)

In science and engineering, base 10 is "common," so we call this logarithm the

Common logarithm: $y = \log_{10} x$ (the power of 10 needed to produce *x*)

 $v = b^x, b > 1$

(1, 0)

(0, 1)

y = x

 $y = \log_h x$,

b > 1

Domain: The domain of $y = \log_b x$ is $(0, \infty)$ (the range of $y = b^x$).

Graph: Continuous on its domain; increasing and concave down for b > 1; decreasing and concave up for 0 < b < 1.

y-intercept: Set x = 0 and solve for *y*, but since $\log_b 0$ is undefined, there is no *y*-intercept.

x-intercept: Set $y = \log_b x = 0$ and solve for *x*. This means $x = b^0 = 1$, so the *x*-intercept is x = 1.

Vertical asymptote: The horizontal asymptote of $y = b^x$ is the line y = 0. Therefore, the vertical asymptote of $y = \log_b x$ is the line x = 0 (the *y*-axis).

Inverse and algebraic properties: The inverse properties show that exponentials and logarithms "undo" each other, and the algebraic ones tell how logarithms affect arithmetic. We explicitly list these properties in terms of base *e* since it is our preferred base. Assume x, y > 0.

 $\log_{b}(b^{x}) = x \text{ and } b^{\log_{b} x} = x \qquad \ln(e^{x}) = x \text{ and } e^{\ln x} = x$ $\log_{b}(x \cdot y) = \log_{b} x + \log_{b} y \qquad \ln(x \cdot y) = \ln x + \ln y$ $\log_{b}(x/y) = \log_{b} x - \log_{b} y \qquad \ln(x/y) = \ln x - \ln y$ $\log_{b}(x^{y}) = y \cdot \log_{b} x \qquad \ln(x^{y}) = y \cdot \ln x$ $\log_{b}(\sqrt[y]{x}) = \frac{\log_{b} x}{y} \qquad \ln(\sqrt[y]{x}) = \frac{\ln x}{y}$

Sometimes it is necessary to convert exponentials and logarithms from one base to another. We show the general conversion from base b to base a, as well the conversion from base b to base e.

Exponential change of base:	$b^x = a^{(\log_a b)x}$	$b^x = e^{(\ln b)x}$
Logarithmic change of base:	$\log_b x = \frac{\log_a x}{\log_a b}$	$\log_b x = \frac{\ln x}{\ln b}$