Lesson 5.4 - Logarithmic Functions

For $b>0$ and $b \neq 1$, the graph of $y=b^{x}$ passes the horizontal line test, so the function $y=b^{x}$ is invertible. The inverse of $y=b^{x}$ is called the

Logarithm base $b: \quad y=\log _{b} x \quad$ (the power of b needed to produce x)
When b is Euler's number e, we write $y=\ln x$ instead of $y=\log _{e} x$ and call this the
Natural logarithm: $y=\ln x \quad$ (the power of e needed to produce x)
In science and engineering, base 10 is "common," so we call this logarithm the
Common logarithm: $y=\log _{10} x \quad$ (the power of 10 needed to produce x)
Domain: The domain of $y=\log _{b} x$ is $(0, \infty)$ (the range of $y=b^{x}$).
Graph: Continuous on its domain; increasing and concave down for $b>1$; decreasing and concave up for $0<b<1$. y-intercept: Set $x=0$ and solve for y, but since $\log _{b} 0$ is undefined, there is no y-intercept.
x-intercept: Set $y=\log _{b} x=0$ and solve for x. This means $x=b^{0}=1$, so the x-intercept is $x=1$.

Vertical asymptote: The horizontal asymptote of $y=b^{x}$ is the line $y=0$. Therefore, the vertical asymptote of $y=\log _{b} x$ is the line $x=0$ (the y-axis).

Inverse and algebraic properties: The inverse properties show that exponentials and logarithms "undo" each other, and the algebraic ones tell how logarithms affect arithmetic. We explicitly list these properties in terms of base e since it is our preferred base. Assume $x, y>0$.

$$
\begin{array}{ll}
\log _{b}\left(b^{x}\right)=x \text { and } \quad b^{\log _{b} x}=x & \ln \left(e^{x}\right)=x \text { and } e^{\ln x}=x \\
\log _{b}(x \cdot y)=\log _{b} x+\log _{b} y & \ln (x \cdot y)=\ln x+\ln y \\
\log _{b}(x / y)=\log _{b} x-\log _{b} y & \ln (x / y)=\ln x-\ln y \\
\log _{b}\left(x^{y}\right)=y \cdot \log _{b} x & \ln \left(x^{y}\right)=y \cdot \ln x \\
\log _{b}(\sqrt[y]{x})=\frac{\log _{b} x}{y} & \ln (\sqrt[y]{x})=\frac{\ln x}{y}
\end{array}
$$

Sometimes it is necessary to convert exponentials and logarithms from one base to another. We show the general conversion from base b to base a, as well the conversion from base b to base e.

$$
\begin{array}{lll}
\text { Exponential change of base: } & b^{x}=a^{\left(\log _{a} b\right) x} & b^{x}=e^{(\ln b) x} \\
\text { Logarithmic change of base: } & \log _{b} x=\frac{\log _{a} x}{\log _{a} b} & \log _{b} x=\frac{\ln x}{\ln b}
\end{array}
$$

