Examples 5.4 - Logarithmic Functions

1. Use the properties of logarithms to expand the expression $\ln \left(\frac{x^{3} \sqrt{4 x-11}}{\left(1+x^{2}\right)^{5}}\right)$.

Solution: By the algebraic properties of logarithms,

$$
\begin{aligned}
\ln \left(\frac{x^{3} \sqrt{4 x-11}}{\left(1+x^{2}\right)^{5}}\right) & =\ln \left(x^{3} \sqrt{4 x-11}\right)-\ln \left(\left(1+x^{2}\right)^{5}\right) \\
& =\ln \left(x^{3}\right)+\ln (\sqrt{4 x-11})-\ln \left(\left(1+x^{2}\right)^{5}\right) \\
& =3 \ln x+\frac{1}{2} \ln (4 x-11)-5 \ln \left(1+x^{2}\right)
\end{aligned}
$$

2. Convert 5^{x} and $\log _{3} x$ to base e.

Solution: We have $5^{x}=e^{(\ln 5) x}$, and $\log _{3} x=\frac{\ln x}{\ln 3}=\left(\frac{1}{\ln 3}\right) \cdot \ln x$.
3. Use inverse properties to solve the equation for x.
(a) $e^{x^{2}-4}=2$
(b) $\log _{10}(3 x+1)=-1$

Solution: (a) If $e^{x^{2}-4}=2$, then $\ln 2=\ln \left(e^{x^{2}-4}\right)=x^{2}-4$, thus $x= \pm \sqrt{\ln 2+4}$.
(b) If $\log _{10}(3 x+1)=-1$, then $10^{-1}=10^{\log _{10}(3 x+1)}=3 x+1$, and so $x=-\frac{3}{10}$.
4. Suppose you invest $\$ 1000$ in an account that earns 6% annual interest compounded monthly. Write a discrete growth model for the amount in the account after the t-th year. Then determine the doubling time, or how many months before the account doubles.

Solution: The model is $A(t)=1000\left(1+\frac{0.06}{12}\right)^{12 t}=1000(1.005)^{12 t}$ dollars after year t. To find the number of months before the account will have $\$ 2000$, we set $1000(1.005)^{12 t}=2000$ and solve for t. We have,

$$
\begin{aligned}
1000(1.005)^{12 t} & =2000 \\
(1.005)^{12 t} & =2 \\
\ln \left((1.005)^{12 t}\right) & =\ln (2) \\
12 t \cdot \ln (1.005) & =\ln (2)
\end{aligned}
$$

Therefore,

$$
t=\frac{\ln (2)}{12 \ln (1.005)} \approx 11.58 \text { years } \approx 139 \text { months }
$$

