Activity $5 . \mathbf{4}^{\dagger}$ - Logarithmic Functions

FOR DISCUSSION: The function $\log _{b} x$ is the inverse of which function?
Describe some of the properties of logarithms.
When might we need to use a logarithmic or exponential change of base?

1. Recall, $b^{x}=y$ is equivalent to $x=\log _{b} y$.
(a) Solve the equation $e^{2 x}=10$ for x.
(b) Solve the equation $\ln (x+3)=5$ for x.
2. (a) Use the properties of logarithms to expand $\ln \left(\frac{(x+2) \cdot \sqrt{x}}{\sqrt[3]{x^{2}+4}}\right)$ as in Example 5.4.1.

[^0](a) Use the properties of logarithms to solve the equation $2 \log _{10}(x+1)=\log _{10} x+\log _{10} 4$.
3. The internet is linked by a global network of host computers. The number of host computers was about 36.5 million in July 1998 and about 351.8 million in July 2005. We want to find a continuous exponential model of the form $N(t)=N_{0} b^{t}$, where N is the number of host computers in millions, N_{0} is the number of host computers in July of 1998, and t is the number of years since July 1998.
(a) We are given that $N_{0}=36.5$ and $N(7)=351.8$. Starting with $N(t)=36.5 b^{t}$, plug in $t=7$ to find b. Round to four decimal places.
(b) The doubling time is the time it takes for the number of host computers to grow to twice the initial amount. Find the doubling time of N. (Hint: Set $N(t)=2 N_{0}$ and solve for t.)
4. Let $A(t)=A_{0} e^{k t}$ denote the amount of a radioactive substance remaining after t years. The half-life of the substance is the time it takes for the substance to decay to half of its initial amount. This is the time t such that $A(t)=0.5 A_{0}$. The half-life of Radium-226 is $t=1590$ years. If a sample initially contains 400 mg , how many milligrams will remain after 2000 years? (Hint: You must find k first.)
5. Evaluate each limit.
(a) $\lim _{x \rightarrow+\infty} \ln (x)=$
(b) $\lim _{x \rightarrow 0^{+}} \ln (x)=$
(c) $\lim _{x \rightarrow+\infty} \frac{9}{\ln (x+2)}=$
(d) $\lim _{x \rightarrow 1} \frac{\ln (3 x-2)}{2 x+5}=$
6. In Lesson 7.5, we will discuss Newton's Law of Cooling and determine that the temperature T of an object at time t can be found by the formula $T(t)=T_{a}+\left(T_{0}-T_{a}\right) e^{-k t}$, where T_{a} is the constant temperature of the surrounding medium, T_{0} is the initial temperature of the object, and k is a positive constant that depends on T_{a} and T_{0}.

Suppose a coroner arrives at a crime scene to examine a corpse found in a basement that maintains a constant temperature of $T_{a}=55^{\circ} \mathrm{F}$. At 11:00 p.m. $(t=0)$, the coroner measured the body temperature to be $T_{0}=80^{\circ} \mathrm{F}$, and at midnight ($t=60 \mathrm{~min}$) she measured it to be $75^{\circ} \mathrm{F}$. Assume that the victim's body temperature was $98.6^{\circ} \mathrm{F}$ at the time of death.
(a) Use the formula $T(t)=T_{a}+\left(T_{0}-T_{a}\right) e^{-k t}$ to find the exact value for k. Then round to six decimal places.

Begin with

$$
T(60)=75=
$$

(b) What was the time of death to the nearest minute?
(Hint: We want to find the time t so that $T_{a}+\left(T_{0}-T_{a}\right) e^{-k t}=98.6$. Keep in mind that $t=0$ corresponds to 11:00 p.m.)

[^0]: ${ }^{\dagger}$ This activity is referenced in Lesson 7.5

