Quiz 5.3 – Implicit Differentiation and Inverse Functions

1. (1 pt) alfredLibrary/AUCI/chapter5/lesson3/quiz/implicit21pet.pg Compute the derivative of y for each equation.

(a) If $y = 4x^3$, then $\frac{dy}{dx} =$ _____

- (b) If $x^2 + y^3 = 40$, then $\frac{dy}{dx} =$ ______
- (c) If $xy^2 = 28$, then $\frac{dy}{dx} =$ _____.

2. (1 pt) alfredLibrary/AUCl/chapter5/lesson3/quiz-/inversetable1pet.pg

If the function g(x) is defined by the table

Generated by @WeBWorK, http://webwork.maa.org, Mathematical Association of America

x	-6	-4	-2	0	2	4	6
g(x)	0	-2	2	6	4	-4	-6

then the inverse function $g^{-1}(x)$ is defined by the table

x	-6	-4	-2	0	2	4	6
$g^{-1}(x)$							

3. (1 pt) alfredLibrary/AUCI/chapter5/lesson3/quiz-/inversesolve1pet.pg The inverse of the function f(x) = 4x - 5 is $f^{-1}(x) =$