## Lesson 5.3 - Implicit Differentiation and Inverse Functions

A function $y$ is defined explicitly in terms of $x$ if it is written in the form $y=f(x)$. In other words, the only $y$ in the equation appears on the left. These are the types of functions that we have studied so far. Finding the derivative of an explicitly defined function is simply a matter of applying the appropriate differentiation rules and formulas to the right-hand side.

A function $y$ is defined implicitly if its relationship to the variable $x$ is given by an equation that is not solved explicitly for $y$. A simple example is the equation of a circle centered at the origin of radius $r$, namely $x^{2}+y^{2}=r^{2}$. In this case, we can find the derivative of $y$ by first solving for $y$ in terms of $x$, but in general, this is not always reasonable or even possible. The good news is that we can find a formula for the derivative of $y$ without ever knowing its explicit form.

Implicit differentiation: Suppose we are given an implicit equation containing $x$ and $y$ such that $y$ is a function of $x$, and we want $\frac{d y}{d x}=y^{\prime}$.

Step 1: Differentiate both sides with respect to $x$, and use the chain rule on each expression involving $y$. That is, use $\frac{d}{d x}(g(y))=g^{\prime}(y) \cdot y^{\prime}$. Thus $y^{\prime}$ will appear in one or more terms.

## Step 2: Solve for $y^{\prime}$. The result will usually contain both $x$ and $y$.

Inverse functions: If the graph of $f$ passes the horizontal line test, then the graph obtained by reversing the inputs and outputs of $f$ passes the vertical line test. This graph represents a new function called the inverse of $f$, denoted by $f^{-1}$, and we say that $f$ is an invertible function. The graph of $f^{-1}$ is the graph of $f$ reflected about the line $y=x$. Sometimes the domain must be restricted so
 that only part of the function is invertible. For instance, $\sqrt{x}$ is the inverse of $x^{2}$ if $x \geq 0$. If an invertible function $f$ is given by an equation $y=f(x)$, then a formula for $f^{-1}$ can be found by solving for $x$ to get $x=f^{-1}(y)$. To graph the inverse in the Cartesian plane, we interchange $x$ and $y$ and write $y=f^{-1}(x)$. Inverses "undo" each other under function composition:

$$
\left(f \circ f^{-1}\right)(x)=f\left(f^{-1}(x)\right)=x \quad \text { and } \quad\left(f^{-1} \circ f\right)(x)=f^{-1}(f(x))=x
$$

Derivative of an inverse function: If $y=f^{-1}(x)$, then $x=f(y)$. By implicit differentiation and the chain rule, $1=\frac{d}{d x}(f(y))=f^{\prime}(y) \cdot y^{\prime}=f^{\prime}\left(f^{-1}(x)\right) \cdot y^{\prime}$, hence

$$
y^{\prime}=\frac{d}{d x}\left(f^{-1}(x)\right)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

