## Homework 5.3 - Implicit Differentiation and Inverse Functions

1. (1 pt) alfredLibrary/AUCI/chapter5/esson3/inverseapplication1pet.pg

Let $C=f(q)=250+0.1 q$ denote the cost in dollars to manufacture $q$ kilograms of a chemical.
(a) Which of the following statements correctly explain the meaning of $f^{-1}(C)$ ? Check all that apply.

- A. The number of kilograms of the chemical someone can purchase with $C$ dollars.
- B. The cost of manufacturing $C$ kilograms of the chemical.
- C. The number of kilograms of the chemical that can be manufactured with $C$ dollars.
- D. The cost of manufacturing one kilogram of the chemical.
- E. The number of kilograms of chemical that can be manufactured for each 1 dollar spent.
- F. None of the above.
(b) Find a formula for $f^{-1}(C)=$ $\qquad$
(Note that $C$ should be the independent variable in your inverse formula, not q.)

2. (1 pt) alfredLibrary/AUCI/chapter5/lesson3/inversesolve2pet.pg

If $f(x)=\sqrt{x^{3}-9}$, then $f^{-1}(x)=$
3. (1 pt) alfredLibrary/AUCI/chapter5/esson3/implicitdrill1pet.pg Practice implicit differentiation.
(a) If $6 x^{3}+x^{2} y-x y^{3}=-2$, then the slope of the curve at the point $(1,0)$ is $\qquad$
(b) If $5 e^{x y}-5 x=y+261$, then the rate of change of the curve at the point $(2,2)$ is $\qquad$
(c) If $\sqrt{x}+\sqrt{y}=7 x$, then the slope of the tangent line at the point $(4,676)$ is $\qquad$
4. (1 pt) Library/AlfredUniv/AUCI/chapter5/esson3-
/implicitapplication1pet.pg
Recall, the volume of a sphere is $V=\frac{4}{3} \pi r^{3}$. If the sphere is increasing in size over time, then we may treat volume and radius as functions of time. That is, $V(t)=\frac{4}{3} \pi[r(t)]^{3}$.

Suppose the radius of the sphere is increasing at a constant rate of 1.5 centimeters per second. At the moment when the radius is 20 centimeters, the volume is increasing at a rate of __ cubic centimeters per second.

