Examples 5.3 - Implicit Differentiation and Inverse Functions

1. Determine the following derivatives. Assume that y is a function of x.
(a) $\frac{d}{d x}\left(x^{2}\right)$
(b) $\frac{d}{d x}\left(y^{2}\right)$
(c) $\frac{d}{d x}\left(x^{2} \sqrt{y}\right)$

Solution: (a) $\frac{d}{d x}\left(x^{2}\right)=2 x$
(b) $\frac{d}{d x}\left(y^{2}\right)=2 y \cdot y^{\prime}=2 y \cdot \frac{d y}{d x}$
(c) $\frac{d}{d x}\left(x^{2} \sqrt{y}\right)=\frac{d}{d x}\left(x^{2}\right) \cdot \sqrt{y}+x^{2} \cdot \frac{d}{d x}(\sqrt{y})=2 x \cdot \sqrt{y}+x^{2} \cdot \frac{1}{2 \sqrt{y}} \cdot y^{\prime}$
2. As the volume V of a sphere changes over time t, its radius r also changes. Given that the volume of a sphere is $V=\frac{4}{3} \pi r^{3}$, find a formula for the rate of change of the radius with respect to time.
Solution: By implicit differentiation, $\frac{d}{d t}(V)=\frac{d}{d t}\left(\frac{4}{3} \pi r^{3}\right)$ and $\frac{d V}{d t}=4 \pi r^{2} \cdot \frac{d r}{d t}$. Therefore, $\frac{d r}{d t}=\frac{1}{4 \pi r^{2}} \cdot \frac{d V}{d t}$.
3. Find the equation of the tangent line to the circle $x^{2}+y^{2}=9$ at $x_{0}=\frac{3}{2}$ in the first quadrant.

Solution: By implicit differentiation, $2 x+2 y y^{\prime}=0$. That is, $2 y y^{\prime}=-2 x$, and so $y^{\prime}=-\frac{x}{y}$. The y-coordinates of the points on the circle at $x_{0}=\frac{3}{2}$ are $y= \pm \frac{3 \sqrt{2}}{2}$. In the first quadrant, $y_{0}=\frac{3 \sqrt{2}}{2}$, hence the slope is $\left.y^{\prime}\right|_{\left(x_{0}, y_{0}\right)}=-\frac{\frac{3}{2}}{\frac{3 \sqrt{2}}{2}}=-\frac{1}{\sqrt{2}}$. In point-
 slope form, the equation of the tangent line is $y-\frac{3 \sqrt{2}}{2}=-\frac{1}{\sqrt{2}}\left(x-\frac{3}{2}\right)$.
4. Find the inverse function for $y=f(x)=3 x-7$.

Solution: Solving for x yields $x=\frac{1}{3}(y+7)$, hence $f^{-1}(x)=\frac{1}{3}(x+7)$. Note that f and f^{-1} "undo" each other under function composition. That is,

$$
\left(f \circ f^{-1}\right)(x)=3\left(\frac{1}{3}(x+7)\right)-7=x \quad \text { and } \quad\left(f^{-1} \circ f\right)(x)=\frac{1}{3}((3 x-7)+7)=x
$$

