Examples 5.3 – Implicit Differentiation and Inverse Functions

- 1. Determine the following derivatives. Assume that y is a function of x.
 - (a) $\frac{d}{dx}(x^2)$ (b) $\frac{d}{dx}(y^2)$ (c) $\frac{d}{dx}(x^2\sqrt{y})$ Solution: (a) $\frac{d}{dx}(x^2) = 2x$ (b) $\frac{d}{dx}(y^2) = 2y \cdot y' = 2y \cdot \frac{dy}{dx}$ (c) $\frac{d}{dx}(x^2\sqrt{y}) = \frac{d}{dx}(x^2) \cdot \sqrt{y} + x^2 \cdot \frac{d}{dx}(\sqrt{y}) = 2x \cdot \sqrt{y} + x^2 \cdot \frac{1}{2\sqrt{y}} \cdot y'$
- 2. As the volume V of a sphere changes over time t, its radius r also changes. Given that the volume of a sphere is $V = \frac{4}{3}\pi r^3$, find a formula for the rate of change of the radius with respect to time.

Solution: By implicit differentiation, $\frac{d}{dt}(V) = \frac{d}{dt}\left(\frac{4}{3}\pi r^3\right)$ and $\frac{dV}{dt} = 4\pi r^2 \cdot \frac{dr}{dt}$. Therefore, $\frac{dr}{dt} = \frac{1}{4\pi r^2} \cdot \frac{dV}{dt}$.

- 3. Find the equation of the tangent line to the circle $x^2 + y^2 = 9$ at $x_0 = \frac{3}{2}$ in the first quadrant. **Solution:** By implicit differentiation, 2x + 2yy' = 0. That is, 2yy' = -2x, and so $y' = -\frac{x}{y}$. The y-coordinates of the points on the circle at $x_0 = \frac{3}{2}$ are $y = \pm \frac{3\sqrt{2}}{2}$. In the first quadrant, $y_0 = \frac{3\sqrt{2}}{2}$, hence the slope is $y'|_{(x_0, y_0)} = -\frac{\frac{3}{2}}{\frac{3\sqrt{2}}{2}} = -\frac{1}{\sqrt{2}}$. In pointslope form, the equation of the tangent line is $y - \frac{3\sqrt{2}}{2} = -\frac{1}{\sqrt{2}}(x - \frac{3}{2})$.
- 4. Find the inverse function for y = f(x) = 3x 7.

Solution: Solving for x yields $x = \frac{1}{3}(y+7)$, hence $f^{-1}(x) = \frac{1}{3}(x+7)$. Note that f and f^{-1} "undo" each other under function composition. That is,

$$(f \circ f^{-1})(x) = 3(\frac{1}{3}(x+7)) - 7 = x$$
 and $(f^{-1} \circ f)(x) = \frac{1}{3}((3x-7)+7) = x$