Homework 5.2 - Derivative and Antiderivative of e^{x}

1. (1 pt) alfredLibrary/AUCI/chapter5/lesson2/question30pet.pg If $h(x)=e^{4 x}\left(4+2 x^{5}+10 x^{8}\right)$, then $h(x)=f(x) g(x)$, where
$f(x)=$ \qquad and $g(x)=$ \qquad

By the product rule,
$h^{\prime}(x)=$ \qquad * \qquad $+$ \qquad * \qquad
2. (1 pt) alfredLibrary/AUCV/chapter5/lesson2/quiz/application2pet.pg The vertical position from equilibrium (in meters) of a hydraulic piston t seconds after a downward force is applied and released is given by the function $D(t)=-2 t e^{-5 t}$.
(a) Find the time at which the piston is at its furthest from equilibrium. That is, find the time at which D has a maximum or minimum.
$t=$ \qquad seconds
(b) Find the position at that time you found in part (a).
$D=$ \qquad meters
3. (1 pt) alfredLibrary/AUCU/chapter5/lesson $2 /$ criticalinflectionpoint1pet. pg Let $f(x)=\frac{4 e^{x}}{4+e^{x}}$. If necessary, enter INF for $\infty,-$ INF for $-\infty$, or NONE.
(a) $f^{\prime}(x)=$ \qquad
(b) The open interval of increase for $f(x)$ is \qquad
(c) The open interval of decrease for $f(x)$ is \qquad
(d) $f(x)$ has a local minimum at \qquad
(e) $f(x)$ has a local maximum at \qquad
(f) $f(x)$ has horizontal asymptotes at $y=$
(HINT: Set up the limits at ∞ and $-\infty$. Notice that one limit can be evaluated directly, and the other is well-suited for L'Hopital's rule.)
4. (1 pt) alfredLibrary/AUCI/chapter5/lesson2/limit1pet.pg

Determine if the function $y=\frac{8}{e^{x}-1}$ has any horizontal asymptotes by evaluating the following limits. If necessary, enter 'INF' for ∞ and '-INF' for $-\infty$. (HINT: Note that l'Hopital's rule does not apply to either limit. You must first determine the limit of the exponential term in the denominator.)
(a) $\lim _{x \rightarrow \infty} \frac{8}{e^{x}-1}=$ \qquad
Enter the right-hand asymptote, or enter NONE: $y=$ \qquad
(b) $\lim _{x \rightarrow-\infty} \frac{8}{e^{x}-1}=$ \qquad
Enter the left-hand asymptote, or enter NONE: $y=$ \qquad
5. (1 pt) alfredLibrary/AUCI/chapter5/lesson2/integral2pet.pg

(Click on graph to enlarge)
The graph of the function $f(x)=9 x-e^{x}$ is the thick blue curve shown above. Assuming that the Fundamental Theorem of Calculus holds for exponential functions, use it to find the shaded area.

