Homework 5.2 – Derivative and Antiderivative of *e^x*

1. (1 pt) alfredLibrary/AUCI/chapter5/lesson2/question30pet.pg If $h(x) = e^{4x} (4 + 2x^5 + 10x^8)$, then h(x) = f(x)g(x), where

f(x) = _____ and g(x) = _____.

By the product rule,

$$h'(x) =$$
____*___+

2. (1 pt) alfredLibrary/AUCl/chapter5/lesson2/quiz/application2pet.pg The vertical position from equilibrium (in meters) of a hydraulic piston t seconds after a downward force is applied and released is given by the function $D(t) = -2te^{-5t}$.

(a) Find the time at which the piston is at its furthest from equilibrium. That is, find the time at which D has a maximum or minimum.

t =______seconds

(b) Find the position at that time you found in part (a).

D = _____ meters

3. (1 pt) alfredLibrary/AUCI/chapter5/lesson2/criticalinflectionpoint1pet.pg Let $f(x) = \frac{4e^x}{4+e^x}$. If necessary, enter INF for ∞ , -INF for $-\infty$, or NONE.

(a) f'(x) = _____

(b) The open interval of increase for f(x) is _____

(c) The open interval of decrease for f(x) is _____

(d) f(x) has a local minimum at _____.

(e) f(x) has a local maximum at _____

(f) f(x) has horizontal asymptotes at y =_____. (HINT: Set up the limits at ∞ and $-\infty$. Notice that one limit can be evaluated directly, and the other is well-suited for L'Hopital's rule.)

4. (1 pt) alfredLibrary/AUCI/chapter5/lesson2/limit1pet.pg

Determine if the function $y = \frac{8}{e^{t}-1}$ has any horizontal asymptotes by evaluating the following limits. If necessary, enter 'INF' for ∞ and '-INF' for $-\infty$. (HINT: Note that l'Hopital's rule does not apply to either limit. You must first determine the limit of the exponential term in the denominator.)

(a)
$$\lim_{x \to \infty} \frac{8}{e^x - 1} = \underline{\qquad}$$

Enter the right-hand asymptote, or enter NONE: y =_____

(b)
$$\lim_{x \to -\infty} \frac{8}{e^x - 1} = \underline{\qquad}$$

Enter the left-hand asymptote, or enter NONE: y =____

5. (1 pt) alfredLibrary/AUCI/chapter5/lesson2/integral2pet.pg

The graph of the function $f(x) = 9x - e^x$ is the thick blue curve shown above. Assuming that the Fundamental Theorem of Calculus holds for exponential functions, use it to find the shaded area.

Generated by @WeBWorK, http://webwork.maa.org, Mathematical Association of America