Examples 5.2 - Derivative and Antiderivative of e^{x}

1. Find the derivative of $f(x)=3 e^{x^{2}-4 x}$.

Solution: By the chain rule, $\frac{d}{d x}\left(e^{g(x)}\right)=e^{g(x)} \cdot g^{\prime}(x)$. Therefore, $f^{\prime}(x)=3 e^{x^{2}-4 x} \cdot(2 x-4)$.
2. The number of CDs sold by a music store monthly is $N(p)=6250\left(e^{-0.074 p}\right)$, where p is the price in dollars per CD . The revenue R is given by the price times the number sold at that price. That is, $R(p)=p N(p)=6250 p\left(e^{-0.074 p}\right)$ dollars. At what price should the store sell CDs to maximize revenue? What is the maximum revenue?

Solution: Since revenue is a product, we must use the product rule to find its rate of change:

$$
\begin{aligned}
R^{\prime}(p) & =(6250 p)^{\prime}\left(e^{-0.074 p}\right)+(6250 p)\left(e^{-0.074 p}\right)^{\prime} \\
& =(6250)\left(e^{-0.074 p}\right)+(6250 p)\left(e^{-0.074 p}\right)(-0.074) \\
& =6250 e^{-0.074 p}(1-0.074 p)
\end{aligned}
$$

The maximum revenue occurs when $R^{\prime}(p)=6250 e^{-0.074 p}(1-0.074 p)=0$. The fact that the exponential function is never zero allows us to divide through by the factor $6250 e^{-0.074 p}$. It follows that $1-0.074 p=0$, hence $p=1 / 0.074$. This means that the store should sell CDs at a price of $\$ 13.51$ in order to maximize revenue, and the revenue at this price is

$$
R\left(\frac{1}{0.074}\right)=6250 \cdot \frac{1}{0.074} \cdot\left(e^{-0.074 \cdot \frac{1}{0.074}}\right) \approx \$ 31,070.90
$$

3. Evaluate the integrals.
(a) $\int\left(10 e^{x}-9 x^{2}\right) d x$
(b) $\int e^{2 x} d x$
(c) $\int 7 e^{-t} d t$
(d) $\int 1.332 e^{9 \theta} d \theta$

Solution: (a) $\int\left(10 e^{x}-9 x^{2}\right) d x=10 e^{x}-\frac{9}{3} x^{3}+C=10 e^{x}-3 x^{3}+C$
(b) $\int e^{2 x} d x=\frac{1}{2} e^{2 x}+C$
(c) $\int 7 e^{-t} d t=\frac{7}{-1} e^{-t}+C=-7 e^{-t}+C$
(d) $\int 1.332 e^{9 \theta} d \theta=\frac{1.332}{9} e^{9 \theta}+C=0.148 e^{9 \theta}+C$

