Lesson 5.1 - Exponential Growth and Decay

An exponential function with base \boldsymbol{b} is a function of the form $y=b^{x}$, where $b>0$ is a fixed real constant.

Do not confuse exponential functions with power functions:
Power function: $y=x^{b}=(\text { variable base })^{(\text {constant power })}$
Exponential function: $y=b^{x}=(\text { constant base })^{(\text {variable power })}$
Domain: The set of all real numbers.

Range: (The range of a function is the set of all possible outputs.) For an exponential function, the range is all positive real numbers, or $(0, \infty)$. Therefore, the graph lies above the x-axis. y-intercept: Set $x=0$ to get $y=b^{0}=1$ for all $b>0$. Therefore, the y-intercept is $(0,1)$. x-intercept: Since $b^{x}=0$ has no solution, an exponential function has no x-intercepts Graph: Everywhere continuous for any $b>0$. If $b=1$, then $y=1^{x}=1$ for all x, so in this case the exponential function is the constant $y=1$. When $b>1$, the graph is positive, increasing, and concave up. When $0<b<1$, the graph is positive, decreasing, and concave up. The x-axis is a horizontal asymptote.

Discrete growth/decay model: Suppose an initial amount A is growing or decaying at a constant rate of $R \%$ per unit time. Let r denote the decimal form of $R \%$, and let $r<0$ denote decay. Then for consecutive time units, the amount present at the later time is $(100 \pm R) \%$ of the amount present at the earlier time. As a decimal, this is equivalent to multiplication by $(1+r)$, and so the amount present at time t is given by $y(t)=A(1+r)^{t}$. This model assumes that the growth/decay rate is compounded once per unit time. If the rate is compounded n times per unit time, then the rate r is divided by n and the exponent is multiplied by n. In this case, $y(t)=A\left(1+\frac{r}{n}\right)^{n t}$.

Continuous growth/decay model: As the number n of compounds per unit time tends to infinity, we get the continuous model,

$$
y(t)=\lim _{n \rightarrow+\infty} A\left(1+\frac{r}{n}\right)^{n t}=A \cdot\left(\lim _{n \rightarrow+\infty} A\left(1+\frac{r}{n}\right)^{n}\right)^{t}
$$

In Activity 5.1, we will numerically verify that $\lim _{n \rightarrow+\infty}\left(1+\frac{1}{n}\right)^{n}=e \approx 2.718282$ (Euler's number), and it turns out that $\lim _{n \rightarrow+\infty}\left(1+\frac{r}{n}\right)^{n}=e^{r}$. The continuous model becomes $y(t)=A\left(e^{r}\right)^{t}=A e^{r t}$.

The "natural" base: If e is Euler's number, then the function $y=e^{x}=\exp (x)$ is the exponential function base e. It is called the natural exponential function.

