## Homework 5.1 - Exponential Growth and Decay

## 1. (1 pt) alfredLibrary/AUCI/chapter5/lesson1/quiz-

/exponentials2pet.pg
Use the properties of exponents to complete the following.
(a) The expression $\frac{e^{x}}{e^{8+x}}$ can be written in the form $e^{f(x)}$, where the exponent $f(x)$ is a function of $x$. Find $f(x)$.
$f(x)=$ $\qquad$
(b) The expression $\left(2^{8 x}\right)^{4 x}$ can be written in the form $2^{g(x)}$, where the exponent $g(x)$ is a function of $x$. Find $g(x)$.
$g(x)=$ $\qquad$
(c) The expression $8^{2 x-1} 8^{2-4 x}$ can be written in the form $8^{h(x)}$, where the exponent $h(x)$ is a function of $x$. Find $h(x)$.
$h(x)=$ $\qquad$
2. (1 pt) alfredLibrary/AUCI/chapter5/lesson1/radioactive1pet.pg A certain radioactive material decays in such a way that the mass remaining (in grams) after $t$ years is given by the function

$$
m(t)=90 e^{-0.03 t}
$$

(a) The initial mass is $\qquad$
(b) The amount remaining after 40 years is $\qquad$ grams.
(c) The decay rate for this material (as a nonnegative percentage) is $\qquad$
3. (1 pt) alfredLibrary/AUCL/chapter5/lesson1/poultry2pet.pg World poultry production was 77.2 million tons in the year 2004 and increasing at a continuous rate of $1.6 \%$ per year. Assume that this growth rate continued.
(a) Write an exponential model $P(t)$ for world poultry production in million tons, where $t$ is years since 2004.
$P(t)=$ $\qquad$
(b) Use your model to estimate world poultry production in the year 2014.

Production $=$ $\qquad$ million tons (Round to the nearest 0.001.)
4. (1 pt) alfredLibrary/AUCI/chapter5/lesson1/asthmalpet.pg

The number of asthma sufferers in the world was about 84 million in 1990 and 130 million in 2001. Let $N$ represent the number of asthma sufferers (in millions) worldwide $t$ years after 1990.
(a) Write $N$ as a linear function of $t$.
(HINT: You are given two points. Use them to find the slopeintercept equation of the line.)
$N(t)=$ $\qquad$ million people.
(b) How many asthma sufferers are predicted worldwide in the year 2014 with the linear model? Round to the nearest 0.01 million people.
$\qquad$ million people.
(c) Write $N$ as a discrete exponential function of $t$ of the form $N(t)=A(1+r)^{t}$.
(HINT: You will need to find $(1+r)$, where $r$ is the rate. Use $N(11)=130$ and the initial value $N(0)=84$ to find $i \mathrm{t}$.)
$N(t)=$ $\qquad$ million people.
(d) How many asthma sufferers are predicted worldwide in the year 2014 with the exponential model? Round to the nearest 0.01 million people.

> million people.

[^0]5. (1 pt) alfredLibrary/AUCI/chapter5/lesson1/explimit1pet.pg Compute each of the following limits at infinity. If your answer is $\infty$ or $-\infty$, then enter 'inf' or '-inf,' respectively. (HINT: First evaluate the limit of the exponent in the exponential function.)


[^0]:    (a) $\lim _{t \rightarrow \infty}\left(12 e^{-0.1 t}+13\right)=$ $\qquad$
    (b) $\lim _{t \rightarrow \infty}\left(14 e^{0.45 t}-9\right)=$ $\qquad$

