Examples 5.1 - Exponential Growth and Decay

1. In 1950, both Lineville and Powertown had populations of 1000 people. The population of Lineville was increasing by a constant 50 people per year, while the population of Powertown was increasing by a constant 5% per year. Write models for these populations, and then view their graphs on the same set of axes in the window $[0,20] \times[1000,2650]$

Solution:

$\frac{\text { Years after } 1950}{0}$	Population of Lineville	Population of Powertown
1		
2		
...
t		
30		

2. Write a discrete model for each situation.
(a) Colony A begins with 250 bacteria and grows by 11% per day.
(b) Colony B begins with 675 bacteria and declines by 9% per day.

Solution:

(a)
(b)
3. Which is the better deal: 6.25% annual interest compounded monthly, or 6.20% annual interest compounded continuously? (Advertised rates are usually called nominal rates.)

Solution: We write a model for each option and compute the annual rate after the effects of compounding (i.e., the effective rate):

Option 1:

Option 2:

