

1. In 1950, both Lineville and Powertown had populations of 1000 people. The population of Lineville was increasing by a constant 50 people per year, while the population of Powertown was increasing by a constant 5% per year. Write models for these populations, and then view their graphs on the same set of axes in the window [0, 20] × [1000, 2650]

Solution:

Population of Lineville	<u>Population of Powertown</u>		

2.	Write	a discrete	model for	each	cituation
∠.	WIIIC	a discible	IIIOUEI IOI	cacii	Situation.

- (a) Colony A begins with 250 bacteria and grows by 11% per day.
- (b) Colony *B* begins with 675 bacteria and declines by 9% per day.

Solution:

(a)

(b)

3. Which is the better deal: 6.25% annual interest compounded monthly, or 6.20% annual interest compounded continuously? (Advertised rates are usually called **nominal rates**.)

Solution: We write a model for each option and compute the annual rate after the effects of compounding (i.e., the **effective rate**):

Option 1:

Option 2: