Activity 5.1 – Exponential Growth and Decay

- 1. (a) If M(t) = at + b, then M(0) = b = 500, M(2) = 2a + 500 = 245, and a = -127.5. The model is M(t) = -127.5t + 500 mg, where *t* is hours after the injection.
 - (b) If $M(t) = A(1-r)^t$, then M(0) = A = 500, $M(2) = 500(1-r)^2 = 245$, and 1-r = 0.7. The model is $M(t) = 500(0.7)^t$ mg, where t is hours after the injection.
- 2. (a) m(0) = 90 grams

4.

- (b) $m(40) \approx 27$ grams
- (c) decay rate of 0.03 = 3%
- 3. $P(t) = 77.2e^{0.016t}$ million tons, where *t* is years since 2004

<i>n</i> compounding per yr	$\left(1+\frac{1}{n}\right)^n$ dollars after 1 yr
1 (yearly)	$\left(1+\frac{1}{1}\right)^{l} = \2.00000000
12 (monthly)	$\left(1 + \frac{1}{12}\right)^{12} = \2.61303529
365 (daily)	\$2.71456748
525,600 (every minute)	\$2.71827922
\downarrow	\rightarrow
	\$2.718281828459

6. $\lim_{n \to +\infty} \left(1 + \frac{r}{n}\right)^n = \lim_{m \to +\infty} \left(1 + \frac{r}{mr}\right)^{mr} = \lim_{m \to +\infty} \left(1 + \frac{1}{m}\right)^{mr} = \lim_{m \to +\infty} \left(\left(1 + \frac{1}{m}\right)^n\right)^r = \left(\lim_{m \to +\infty} \left(1 + \frac{1}{m}\right)^m\right)^r;$

The limit inside the outer parentheses is equivalent to $\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = e$, hence

$$\lim_{n \to +\infty} \left(1 + \frac{r}{n}\right)^n = \left(\lim_{m \to +\infty} \left(1 + \frac{1}{m}\right)^m\right)^r = (e)^r = e^r$$