Activity 5.1 - Exponential Growth and Decay

1. (a) If $M(t)=a t+b$, then $M(0)=b=500, M(2)=2 a+500=245$, and $a=-127.5$.

The model is $M(t)=-127.5 t+500 \mathrm{mg}$, where t is hours after the injection.
(b) If $M(t)=A(1-r)^{t}$, then $M(0)=A=500, M(2)=500(1-r)^{2}=245$, and $1-r=0.7$.

The model is $M(t)=500(0.7)^{t} \mathrm{mg}$, where t is hours after the injection.
2. (a) $m(0)=90$ grams
(b) $m(40) \approx 27$ grams
(c) decay rate of $0.03=3 \%$
3. $P(t)=77.2 e^{0.016 t}$ million tons, where t is years since 2004
4.

n compounding per yr	$\left(1+\frac{1}{n}\right)^{n}$ dollars after 1 yr
1 (yearly)	$\left(1+\frac{1}{1}\right)^{1}=\$ 2.00000000$
12 (monthly)	$\left(1+\frac{1}{12}\right)^{12}=\$ 2.61303529$
365 (daily)	$\$ 2.71456748$
525,600 (every minute)	$\$ 2.71827922$
\downarrow	\downarrow
$+\infty$	$\$ 2.718281828459 \ldots$

5.

METHOD 1: $\quad f^{\prime}(0)=\frac{d}{d x}\left(\left.e^{x}\right|_{x=0}=\frac{R I S E}{R U N}=\frac{3}{3}=1\right.$

METHOD 2: $f^{\prime}(0)=\left.\frac{d}{d x}\left(e^{x}\right)\right|_{x=0}=\lim _{\Delta x \rightarrow 0} \frac{e^{\Delta x}-1}{\Delta x}=1$

Δx	-0.1	-0.01	-0.001	\rightarrow	0	\leftarrow	0.001	0.01	0.1
$\frac{e^{\Delta x}-1}{\Delta x}$	0.9516	0.9950	0.9995	\rightarrow	1	\leftarrow	1.0005	1.0050	1.0517

6. $\lim _{n \rightarrow+\infty}\left(1+\frac{r}{n}\right)^{n}=\lim _{m r \rightarrow+\infty}\left(1+\frac{r}{m r}\right)^{m r}=\lim _{m \rightarrow+\infty}\left(1+\frac{1}{m}\right)^{m r}=\lim _{m \rightarrow+\infty}\left(\left(1+\frac{1}{m}\right)^{n}\right)^{r}=\left(\lim _{m \rightarrow+\infty}\left(1+\frac{1}{m}\right)^{n}\right)^{r}$;

The limit inside the outer parentheses is equivalent to $\lim _{n \rightarrow+\infty}\left(1+\frac{1}{n}\right)^{n}=e$, hence

$$
\lim _{n \rightarrow+\infty}\left(1+\frac{r}{n}\right)^{n}=\left(\lim _{m \rightarrow+\infty}\left(1+\frac{1}{m}\right)^{n}\right)^{r}=(e)^{r}=e^{r}
$$

