Activity 5.1[†] – Exponential Growth and Decay

FOR DISCUSSION: What is the difference between exponential and power functions? How are exponential and linear models similar? How are they different?

- 1. A patient is injected with a 500 mg dose of a medication. After 2 hours, 245 mg remain in the bloodstream. Let M(t) be the amount of medication in the bloodstream (in mg) *t* hours after the injection. Notice that you are given two points (0, 500) and (2, 245).
 - (a) Write *M* as a linear function of the form M(t) = at + b. (Find *a* and *b*.)

(b) Write *M* as a discrete exponential function of the form $M(t) = A(1 - r)^t$. (Find *A* and 1–*r*.)

- 2. A certain radioactive material decays in such a way that the mass remaining (in grams) after t years is given by the function $m(t) = 90e^{-0.03t}$.
 - (a) Determine the initial mass of the material.
 - (b) Compute the mass remaining after 40 years.
 - (c) Determine the decay rate for this material (as a nonnegative percentage).

[†] This activity is referenced in Lessons 5.1 and 5.2

3. World poultry production was 77.2 million tons in the year 2004 and increasing at a continuous rate of 1.6% per year. Write an exponential model P(t) for world poultry production in million tons, where *t* is years since 2004.

4. Suppose you invest A =\$1.00 at r = 100% interest compounded *n* times per year. The discrete model for this situation is

$$y(t) = A \cdot \left(1 + \frac{r}{n}\right)^{nt} = (1.00) \cdot \left(1 + \frac{1.00}{n}\right)^{nt} = \left(1 + \frac{1}{n}\right)^{nt}$$

After t = 1 year, the amount of money in your account is

$$y(1) = \left(1 + \frac{1}{n}\right)^n$$

Compounding more and more frequently will, of course, yield more and more money, but the amount you can accumulate over the course of a year has a limit, called <u>Euler's number</u>.

Use your calculator to fill in the table for the given number n of compounds per year. Round your answers to 8 decimal places.

<i>n</i> compounding per yr	$\left(1+\frac{1}{n}\right)^n$ dollars after 1 yr			
1 (yearly)	$\left(1+\frac{1}{1}\right)^{l} = $ \$2.00000000			
12 (monthly)	$\left(1 + \frac{1}{12}\right)^{12} =$			
365 (daily)				
525,600 (each minute)				
\downarrow	\downarrow			
	\$2.718281828459			

- **Euler's number** is defined as $e = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = 2.7182818....$
- 5. In the next lesson, we will need the slope of $f(x) = e^x$ at 0. We can approximate it using two methods.

METHOD 1: Sketch a tangent line to $f(x) = e^x$ at x = 0, and approximate its slope using rise over run.

$$f'(0) = \frac{d}{dx} \left(e^x \right)_{x=0} = \underline{\qquad}$$

METHOD 2: By the definition of the derivative at x = 0,

$$f'(0) = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{e^{\Delta x} - 1}{\Delta x}$$

Use your calculator to fill in the table for the given values of Δx . Round your answers to 4 decimal places.

Δx	-0.1	-0.01	-0.001	\rightarrow	0	←	0.001	0.01	0.1
$\frac{e^{\Delta x} - 1}{\Delta x}$				\rightarrow		~			

Now use the table to deduce the slope of $f(x) = e^x$ at x = 0:

$$f'(0) = \frac{d}{dx} \left(e^x \right) \Big|_{x=0} = \lim_{\Delta x \to 0} \frac{e^{\Delta x} - 1}{\Delta x} = \underline{\qquad}$$

6. (OPTIONAL) In Part 1, we saw that $\lim_{n \to +\infty} (1 + \frac{1}{n})^n = e$. Now let us consider $\lim_{n \to +\infty} (1 + \frac{r}{n})^n$ for a fixed r > 0. Let n = mr. Then as $n \to +\infty$, so does m. Substitute n = mr into $\lim_{n \to +\infty} (1 + \frac{r}{n})^n$ and simplify the result to obtain a limit as $m \to +\infty$. Deduce that $\lim_{n \to +\infty} (1 + \frac{r}{n})^n = e^r$.