Activity 5.1^{\dagger} - Exponential Growth and Decay

FOR DISCUSSION: What is the difference between exponential and power functions?
How are exponential and linear models similar? How are they different?

1. A patient is injected with a 500 mg dose of a medication. After 2 hours, 245 mg remain in the bloodstream. Let $M(t)$ be the amount of medication in the bloodstream (in mg) t hours after the injection. Notice that you are given two points $(0,500)$ and $(2,245)$.
(a) Write M as a linear function of the form $M(t)=a t+b$. (Find a and b.)
(b) Write M as a discrete exponential function of the form $M(t)=A(1-r)^{t}$. (Find A and $1-r$.)
2. A certain radioactive material decays in such a way that the mass remaining (in grams) after t years is given by the function $m(t)=90 e^{-0.03 t}$.
(a) Determine the initial mass of the material.
(b) Compute the mass remaining after 40 years.
(c) Determine the decay rate for this material (as a nonnegative percentage).

[^0]3. World poultry production was 77.2 million tons in the year 2004 and increasing at a continuous rate of 1.6% per year. Write an exponential model $P(t)$ for world poultry production in million tons, where t is years since 2004.
4. Suppose you invest $A=\$ 1.00$ at $r=100 \%$ interest compounded n times per year. The discrete model for this situation is
$$
y(t)=A \cdot\left(1+\frac{r}{n}\right)^{n t}=(1.00) \cdot\left(1+\frac{1.00}{n}\right)^{n t}=\left(1+\frac{1}{n}\right)^{n t}
$$

After $t=1$ year, the amount of money in your account is

$$
y(1)=\left(1+\frac{1}{n}\right)^{n}
$$

Compounding more and more frequently will, of course, yield more and more money, but the amount you can accumulate over the course of a year has a limit, called Euler's number.

Use your calculator to fill in the table for the given number n of compounds per year. Round your answers to 8 decimal places.

n compounding per yr	$\left(1+\frac{1}{n}\right)^{n}$ dollars after 1 yr
1 (yearly)	$\left(1+\frac{1}{1}\right)^{1}=\$ 2.00000000$
12 (monthly)	$\left(1+\frac{1}{12}\right)^{12}=$
365 (daily)	
525,600 (each minute)	\downarrow
\downarrow	$\$ 2.718281828459 \ldots$
$+\infty$	

Euler's number is defined as $e=\lim _{n \rightarrow+\infty}\left(1+\frac{1}{n}\right)^{n}=2.7182818 \ldots$.
5. In the next lesson, we will need the slope of $f(x)=e^{x}$ at 0 . We can approximate it using two methods.

METHOD 1: Sketch a tangent line to $f(x)=e^{x}$ at $x=0$, and approximate its slope using rise over run.

$$
f^{\prime}(0)=\frac{d}{d x}\left(e^{x}\right)_{x=0}=
$$

\qquad

METHOD 2: By the definition of the derivative at $x=0$,

$$
f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{f(0+\Delta x)-f(0)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{e^{\Delta x}-1}{\Delta x}
$$

Use your calculator to fill in the table for the given values of Δx. Round your answers to 4 decimal places.

Δx	-0.1	-0.01	-0.001	\rightarrow	0	\leftarrow	0.001	0.01	0.1
$\frac{e^{\Delta x}-1}{\Delta x}$				\rightarrow		\leftarrow			

Now use the table to deduce the slope of $f(x)=e^{x}$ at $x=0$:

$$
f^{\prime}(0)=\left.\frac{d}{d x}\left(e^{x}\right)\right|_{x=0}=\lim _{\Delta x \rightarrow 0} \frac{e^{\Delta x}-1}{\Delta x}=
$$

\qquad
6. (OPTIONAL) In Part 1 , we saw that $\lim _{n \rightarrow+\infty}\left(1+\frac{1}{n}\right)^{n}=e$. Now let us consider $\lim _{n \rightarrow+\infty}\left(1+\frac{r}{n}\right)^{n}$ for a fixed $r>0$. Let $n=m r$. Then as $n \rightarrow+\infty$, so does m. Substitute $n=$ $m r$ into $\lim _{n \rightarrow+\infty}\left(1+\frac{r}{n}\right)^{n}$ and simplify the result to obtain a limit as $m \rightarrow+\infty$. Deduce that $\lim _{n \rightarrow+\infty}\left(1+\frac{r}{n}\right)^{n}=e^{r}$.

[^0]: ${ }^{\dagger}$ This activity is referenced in Lessons 5.1 and 5.2

