Examples 4.3 - Continuity and L'Hôpital's Rule

1. (a) Give an example of a function that is continuous but not differentiable.
(b) Give an example of a function that is differentiable but not continuous.

Solution: (a) An example of a continuous and non-differentiable function is $f(x)=|x|$. On one hand, we have $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=0=f(0)$, which shows that f is continuous at $x=0$. On the other hand, $-1=\lim _{x \rightarrow 0^{-}} f^{\prime}(x) \neq \lim _{x \rightarrow 0^{+}} f^{\prime}(x)=+1$ which shows that f is not differentiable at $x=0$.
(b) There is no such function, since a differentiable function must be continuous! Recall, a function f is differentiable at $x=a$ if $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ exists. Since the denominator is approaching zero, the numerator must be approaching zero as well (otherwise the limit would not exist). That is, $\lim _{x \rightarrow a}(f(x)-f(a))=0$. But if this is the case, then $\lim _{x \rightarrow a} f(x)=f(a)$, which shows that f is continuous at a.
2. Find constants c and d that make the piecewise function f continuous everywhere.

$$
f(x)=\left\{\begin{array}{cc}
2-x, & x<1 \\
c x^{2}+d, & 1 \leq x<2 \\
\frac{1}{2} x+2, & x \geq 2
\end{array}\right.
$$

Solution: We need the breakpoints to match up. At $x=1$, we must have $2-(1)=c(1)^{2}+d$, hence, $d=1-c$. At $x=2$, we must have $c(2)^{2}+d=\frac{1}{2}(2)+2$, hence, $d=3-4 c$. It follows that $1-c=3-4 c$, so $c=\frac{2}{3}$ and $d=\frac{1}{3}$.
3. Use L'Hôpital's Rule to find $\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{3 x^{2}-9 x+6}$ and $\lim _{x \rightarrow+\infty} \frac{4 x^{2}-2 x+7}{3 x^{2}+9 x-1}$.

Solution: We can use L'Hôpital's Rule for the first limit since direct substitution yields the indeterminate form $0 / 0$. Therefore,

$$
\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{3 x^{2}-9 x+6} \stackrel{L R}{=} \lim _{x \rightarrow 2} \frac{2 x-1}{6 x-9}=1
$$

For the second limit, both the numerator and denominator grow without bound as x approaches positive infinity, so L'Hôpital's Rule applies here as well. Note that we can repeatedly apply the rule as long as the new limit is the correct indeterminate form:

$$
\lim _{x \rightarrow+\infty} \frac{4 x^{2}-2 x+7^{L R}}{3 x^{2}+9 x-1}=\lim _{x \rightarrow+\infty} \frac{8 x-2}{6 x+9}=\lim _{x \rightarrow+\infty} \frac{8}{6}=\frac{4}{3}
$$

