
Examples 4.3 – Continuity and L’Hôpital’s Rule 

1. (a)  Give an example of a function that is continuous but not differentiable. 

(b) Give an example of a function that is differentiable but not continuous. 
 

Solution:  (a)  An example of a continuous and non-differentiable function is f (x) = |x|.  

On one hand, we have )0(0)(lim)(lim
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, which shows that f is 

continuous at x = 0.  On the other hand, 1)(lim)(lim1
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shows that f is not differentiable at x = 0. 
 

(b)  There is no such function, since a differentiable function must be continuous!  Recall, 

a function f is differentiable at x = a if 
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lim exists.  Since the denominator is 

approaching zero, the numerator must be approaching zero as well (otherwise the limit 

would not exist).  That is,   0)()(lim  afxfax .  But if this is the case, then

)()(lim afxfax  , which shows that f is continuous at a.  

 

2. Find constants c and d that make the piecewise function f continuous everywhere. 
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Solution:  We need the breakpoints to match up.  At x = 1, we must have 2 – (1) = c(1)
2
 + d, 

hence, d = 1 – c.  At x = 2, we must have c(2)
2
 + d = 

2
1 (2) + 2, hence, d = 3 – 4c.  It follows 

that 1 – c = 3 – 4c, so c = 
3
2  and d =

3
1 .   

 

3. Use L’Hôpital’s Rule to find 
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Solution:  We can use L’Hôpital’s Rule for the first limit
 
since direct substitution yields the 

indeterminate form 0/0.  Therefore,  
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For the second limit, both the numerator and denominator grow without bound as x 

approaches positive infinity, so L’Hôpital’s Rule applies here as well.  Note that we can 

repeatedly apply the rule as long as the new limit is the correct indeterminate form: 
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