Examples 4.3 - Continuity and L'Hôpital's Rule

1. (a) Give an example of a function that is continuous but not differentiable.
(b) Give an example of a function that is differentiable but not continuous.

Solution: (a) An example of a continuous and non-differentiable function is $f(x)=|x|$.
On one hand,

$$
\lim _{x \rightarrow 0^{-}} f(x)=
$$ and $\lim _{x \rightarrow 0^{+}} f(x)=$ \qquad ,

which shows that f is continuous at $x=0$.
On the other hand, $\quad \lim _{x \rightarrow 0^{-}} f^{\prime}(x)=\ldots \quad$ and $\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=$ which shows that f is not differentiable at $x=0$.
(b)
2. Find constants c and d that make the piecewise function f continuous everywhere.

$$
f(x)=\left\{\begin{array}{cc}
2-x, & x<1 \\
c x^{2}+d, & 1 \leq x<2 \\
\frac{1}{2} x+2, & x \geq 2
\end{array}\right.
$$

Solution:
3. Use L'Hôpital's Rule to find $\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{3 x^{2}-9 x+6}$ and $\lim _{x \rightarrow+\infty} \frac{4 x^{2}-2 x+7}{3 x^{2}+9 x-1}$.

Solution:

