
  Lesson 4.2 – Horizontal and Vertical Asymptotes 

In Lesson 3.2, we learned that end behavior refers to how a graph  

behaves as x tends toward infinity or negative infinity.  For  

polynomial and rational functions, the y-values may get bigger and  

bigger positively or negatively as we move along the x-axis in either  

direction.  Another possibility for rational functions is that the                               or 

y-values may settle on a finite number L.  If so, the line y = L is  

called a horizontal asymptote.  Note that a graph can cross or touch  

a horizontal asymptote.  For a rational function, the leading terms in 

the numerator and denominator dictate the end behavior.  We will  

verify this statement in Activity 4.3. 
 

For a rational function, a vertical asymptote can be detected by analyzing the zeros of the 

numerator and denominator, but sometimes we want to know about behavior near an asymptote.  

We use one-sided limits to describe what happens to a graph as we approach an input from one 

side or the other:  

     Left-hand limit:  )(lim xf
ax 

         Right-hand limit:  )(lim xf
ax 

    

 (x is approaching a from the left.)  (x is approaching a from the right.) 
 

Since we are typically interested in whether the one-sided limits are equal to each other, we use 

the two-sided limit, )(lim xfax , to describe this behavior.  A two-sided limit exists if the one-

sided limits are equal and finite.  In all other cases, we say that the limit does not exist.  The 

following table will help us organize the different possibilities and notations.   
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(Here, DNE means the limit neither settles 

on a value nor grows without bound.) 

The limit does not exist. 
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