Homework 4.2 – Horizontal and Vertical Asymptotes

1. (1 pt) alfredLibrary/AUCl/chapter4/lesson2/question1.pg Determine each of the given limits for the function f graphed below. Type 'inf' for ∞ , '-inf' for $-\infty$, and 'dne' if the limit does not exist. Click on the graph to enlarge the image.

- (a) $\lim_{x \to -5^-} f(x) =$
- (b) $\lim_{x \to -5^+} f(x) =$
- $(c) \lim_{x \to -5} f(x) = \underline{\hspace{1cm}}$
- $(d) \lim_{x \to -3} f(x) = \underline{\hspace{1cm}}$
- (e) $\lim_{x \to 1^{-}} f(x) =$ _____
- (f) $\lim_{x \to -1^+} f(x) =$ _____
- $(g)\lim_{x\to -1}f(x) = \underline{\hspace{1cm}}$
- (h) $\lim_{x \to 2^{-}} f(x) =$ _____
- (i) $\lim_{x \to 2^+} f(x) = \underline{\hspace{1cm}}$
- (j) $\lim_{x \to 2} f(x) =$
- $\lim_{x \to 2} f(x) = \underline{\hspace{1cm}}$
- (I) $\lim_{x \to -\infty} f(x) =$
- 2. (1 pt) alfredLibrary/AUCI/chapter4/lesson2/analyzegraph2pet.pg Let $g(x) = \frac{1}{(x \pm 6)^3}$.
- (a) Complete the table below for x-values close to −6. If a value is undefined, enter NONE.

х	-7	-6.1	-6.01	-6	-5.99	-5.9	-5
g(x)							

- (b) Based on the values in the table, $g(x) \rightarrow$ _____() as $x \rightarrow -6$ from the left.
- (c) Based on the values in the table, $g(x) \rightarrow$ ____() as $x \rightarrow -6$ from the right.
- (d) Complete the two tables below to see how g(x) behaves in the long-run. If a value is undefined, enter *NONE*. Enter exact answers using fractions instead of long decimal answers.

x	10	100	1000	
g(x)				

x	-10	-100	-1000
g(x)			

- (e) Based on the values in your table, g(x) → ______ () as x takes on larger and larger positive values.
- (f) Based on the values in your table, g(x) → _____ () as x takes on larger and larger negative values.
- (h) The horizontal asymptote(s) is/are y = _____. ()
 - 3. (1 pt) alfredLibrary/AUCI/chapter4/lesson2/quiz/question2.pg

Analyze the behavior of the function $y = \frac{4x+32}{x^2+(-13)x+40}$ near the vertical asymptote x = 8. Enter 'inf' if the limit is ∞ , enter '-inf' if the limit is $-\infty$, and enter 'dne' if the limit does not exist.

(a)
$$\lim_{x \to 8^-} \frac{4x + 32}{x^2 + (-13)x + 40} =$$

(b)
$$\lim_{x \to 8^+} \frac{4x + 32}{x^2 + (-13)x + 40} =$$

(c)
$$\lim_{x\to 8} \frac{4x+32}{x^2+(-13)x+40} =$$

4. (1 pt) alfredLibrary/AUCI/chapter4/lesson2/analyzegraph1pet.pg Instructions:

- If you are asked for a function, then enter a function.
- If you are asked to find x or y -values, then enter either a number or a list of numbers separated by commas. If there are no solutions, enter None.
- If you are asked to find an interval or union of intervals, then use <u>interval notation</u>. Enter {} if an interval is empty.
- If you are asked to find a limit, then enter either a number, 'inf' for ∞, '-inf' for -∞, or 'dne' if the limit does not exist.

Let
$$f(x) = \frac{5x^2}{x^2 - 16}$$
.

(a) Calculate the first derivative of f. (At this point, it would be wise to simplify the numerator by eliminating parentheses and combining like terms.)

$$f'(x) =$$

(b) List all	of the points where $f'(x)$ is zero or undefined (Hint
	eros of the numerator and the zeros of the denomina-
	oints in this list that are also in the domain of f are tical points."):
x =	
	ne points from (b) and sign tests to find the inter- hich f is increasing and the intervals on which f is

(c) Use the points from (b) and sign tests to find the intervals on which f is increasing and the intervals on which f is decreasing (Hint Your answers must exclude any points where f' is undefined.):

f is increasing on ______.

f is decreasing on _____

(d) Enter the inputs for the local extrema:

Local maximum at x =

Local minimum at $x = \underline{\hspace{1cm}}$

(e) Find the following left- and right-hand limits at the vertical asymptote x = −4.

$$\lim_{x \to -4^{-}} \frac{5x^{2}}{x^{2} - 16} = \boxed{?} \quad \lim_{x \to -4^{+}} \frac{5x^{2}}{x^{2} - 16} = \boxed{?}$$

(f) Find the following left- and right-hand limits at the vertical asymptote x = 4.

$$\lim_{x \to 4^{-}} \frac{5x^{2}}{x^{2} - 16} = \boxed{?} \quad \lim_{x \to 4^{+}} \frac{5x^{2}}{x^{2} - 16} = \boxed{?}$$

(g) Find the following limits at infinity to determine any horizontal asymptotes.

Generated by @WeHWorK, http://webwork.maa.org, Mathematical Association of America

$$\lim_{x \to -\infty} \frac{5x^2}{x^2 - 16} = \boxed{?} \qquad \lim_{x \to +\infty} \frac{5x^2}{x^2 - 16} = \boxed{?}$$

(h) Calculate the second derivative of f. (At this point, it would be wise to simplify the numerator by eliminating parentheses and combining like terms.)

$$f''(x) =$$

(i) List the points where the second derivative is zero or undefined:

 $x = \underline{\hspace{1cm}}$

(j) Use these points and sign tests to find the intervals of concavity:

f is concave up on ______.

f is concave down on _____

(k) Complete the following for the function f.

The domain of f is ______.

The y-intercept is ______.

The x-intercepts are

(1) Sketch a graph of the function f without using a graphing calculator. Plot the y-intercept and the x-intercepts, if any exist. Draw dashed lines for horizontal and vertical asymptotes. Plot the points where f has local maxima, local minima, and inflection points. Use what you know about intervals of increase/decrease and concavity to sketch the remaining parts of the graph of f.