Homework 4.2 - Horizontal and Vertical Asymptotes

1. (1 pt) alfredLibrary/AUCV/chapter 4 /lesson 2 /question1.pg Determine each of the given limits for the function f graphed below. Type 'inf' for ∞, '-inf' for $-\infty$, and 'dne' if the limit does not exist. Click on the graph to enlarge the image.

(a) $\lim _{x \rightarrow-5^{-}} f(x)=$ \qquad
(b) $\lim _{x \rightarrow-5^{+}} f(x)=$ \qquad
(c) $\lim _{x \rightarrow-5} f(x)=$ \qquad
(d) $\lim _{x \rightarrow-3} f(x)=$
(e) $\lim _{x \rightarrow-1^{-}} f(x)=$ \qquad
(f) $\lim _{x \rightarrow-1^{+}} f(x)=$ \qquad
(g) $\lim _{x \rightarrow-1} f(x)=$
(h) $\lim _{x \rightarrow 2^{-}} f(x)=$ \qquad
(i) $\lim _{x \rightarrow 2^{+}} f(x)=$ \qquad
(j) $\lim _{x \rightarrow 2} f(x)=$
(k) $\lim _{x \rightarrow \infty} f(x)=$ \qquad
(I) $\lim _{x \rightarrow-\infty} f(x)=$
2. (1 pt) alfredLibrary/AUCV/chapter4/lesson2/analyzegraph2pet.pg Let $g(x)=\frac{1}{(x+6)^{3}}$.
(a) Complete the table below for x-values close to -6 . If a value is undefined, enter NONE

x	-7	-6.1	-6.01	-6	-5.99	-5.9	-5
$g(x)$	-	-	-	-	-	-	-

(b) Based on the values in the table, $g(x) \rightarrow-\quad$ as $x \rightarrow-6$ from the left.
(c) Based on the values in the table, $g(x) \rightarrow-\quad$ () as $x \rightarrow-6$ from the right.
(d) Complete the two tables below to see how $g(x)$ behaves in the long-run. If a value is undefined, enter NONE Enter exact answers using fractions instead of long decimal answers.

x	10	100	1000
$g(x)$	-		-

x	-10	-100	-1000
$g(x)$	-	-	-

(e) Based on the values in your table, $g(x) \rightarrow-0$ as x takes on larger and larger positive values.
(f) Based on the values in your table, $g(x) \rightarrow$ _ as x takes on larger and larger negative values.
(g) The vertical asymptote(s) is/are $x=$ \qquad 0
(h) The horizontal asymptote(s) is/are $y=$ \qquad 0

3. (1 pt) alfredLibrary/AUCL/chapter4/lesson2/quiz/question2.pg

Analyze the behavior of the function $y=\frac{4 x+32}{x^{2}+(-13) x+40}$ near the vertical asymptote $x=8$. Enter 'inf' if the limit is ∞, enter '-inf' if the limit is $-\infty$, and enter 'dne' if the limit does not exist.
(a) $\lim _{x \rightarrow \mathrm{~B}^{-}} \frac{4 x+32}{x^{2}+(-13) x+40}=$ \qquad
(b) $\lim _{x \rightarrow 8^{+}} \frac{4 x+32}{x^{2}+(-13) x+40}=$ \qquad
(c) $\lim _{x \rightarrow 8} \frac{4 x+32}{x^{2}+(-13) x+40}=$ \qquad
4. (1 pt) alfredLibrary/AUCL/chapter4/lesson2/analyzegraph1pet.pg Instructions:

- If you are asked for a function, then enter a function.
- If you are asked to find x - or y-values, then enter either a number or a list of numbers separated by commas. If there are no solutions, enter None .
- If you are asked to find an interval or union of intervals, then use interval notation. Enter $\}$ if an interval is empty.
- If you are asked to find a limit, then enter either a number, 'inf' for ∞, '-inf' for $-\infty$, or 'dne' if the limit does not exist
Let $f(x)=\frac{5 x^{2}}{x^{2}-16}$.
(a) Calculate the first derivative of f. (At this point, it would be wise to simplify the numerator by eliminating parentheses and combining like terms.)
$f^{\prime}(x)=$ \qquad
(b) List all of the points where $f^{\prime}(x)$ is zero or undefined (Hint: Find the zeros of the numerator and the zeros of the denominator. The points in this list that are also in the domain of f are called "critical points."):
$x=$ \qquad
(c) Use the points from (b) and sign tests to find the intervals on which f is increasing and the intervals on which f is decreasing (Hint: Your answers must exclude any points where f^{\prime} is undefined.):
f is increasing on \qquad -.
f is decreasing on \qquad
(d) Enter the inputs for the local extrema:

Local maximum at $x=$ \qquad
Local minimum at $x=$ \qquad
(e) Find the following left- and right-hand limits at the vertical asymptote $x=-4$.

$$
\lim _{x \rightarrow-4-} \frac{5 x^{2}}{x^{2}-16}=? \quad \lim _{x \rightarrow-4^{+}} \frac{5 x^{2}}{x^{2}-16}=?
$$

(f) Find the following left- and right-hand limits at the vertical asymptote $x=4$.

$$
\lim _{x \rightarrow 4^{-}} \frac{5 x^{2}}{x^{2}-16}=? \quad \lim _{x \rightarrow 4^{+}} \frac{5 x^{2}}{x^{2}-16}=?
$$

(g) Find the following limits at infinity to determine any horizontal asymptotes.

$$
\lim _{x \rightarrow-\infty} \frac{5 x^{2}}{x^{2}-16}=? \quad \lim _{x \rightarrow+\infty} \frac{5 x^{2}}{x^{2}-16}=?
$$

(h) Calculate the second derivative of f. (At this point, it would be wise to simplify the numerator by eliminating parentheses and combining like terms.)
$f^{\prime \prime}(x)=$ \qquad
(i) List the points where the second derivative is zero or undefined:
$x=$ \qquad
(j) Use these points and sign tests to find the intervals of concavity:
f is concave up on \qquad
f is concave down on \qquad
(k) Complete the following for the function f.

The domain of f is \qquad —.

The y-intercept is \qquad -.

The x-intercepts are \qquad
(I) Sketch a graph of the function f without using a graphing calculator. Plot the y-intercept and the x-intercepts, if any exist. Draw dashed lines for horizontal and vertical asymptotes. Plot the points where f has local maxima, local minima, and inflection points. Use what you know about intervals of increase/decrease and concavity to sketch the remaining parts of the graph of f.

