## Examples 4.2 - Horizontal and Vertical Asymptotes

1. Find any horizontal asymptotes of the following functions.
(a) $f(x)=\frac{4 x^{2}-2 x+7}{3 x^{2}+9 x-1}$
(b) $h(t)=\frac{t^{4}+t^{3}+5 t^{2}+5 t}{2 t^{3}-3 t+4}$
(c) $g(x)=\frac{3 x-7}{\sqrt{2 x^{2}+4 x}}$

Solution: Horizontal asymptotes of a function can be found by evaluating limits at infinity and negative infinity. For a rational function, the terms with the highest powers in the numerator a denominator dominate the behavior, so all we need to consider are those terms.
(a) Since $\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{4 x^{2}}{3 x^{2}}=\lim _{x \rightarrow+\infty} \frac{4}{3}=\frac{4}{3}$, and $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{4 x^{2}}{3 x^{2}}=\lim _{x \rightarrow-\infty} \frac{4}{3}=\frac{4}{3}$, $f$ has one horizontal asymptote $y=4 / 3$ (in both directions).
(b) Since $\lim _{t \rightarrow+\infty} h(t)=\lim _{t \rightarrow+\infty} \frac{t^{4}}{2 t^{3}}=\lim _{t \rightarrow+\infty} \frac{t}{2}=+\infty$, and $\lim _{t \rightarrow-\infty} h(t)=\lim _{t \rightarrow-\infty} \frac{t^{4}}{2 t^{3}}=\lim _{t \rightarrow-\infty} \frac{t}{2}=-\infty$, $h$ has no horizontal asymptotes.
(c) Although $g$ is not rational, we can still analyze the terms with the highest powers, but we must be sure to keep the radical. In this example, we can use the fact that $\sqrt{x^{2}}= \pm x$, depending on whether $x$ is positive or negative, and we find two horizontal asymptotes:

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty} g(x)=\lim _{x \rightarrow+\infty} \frac{3 x}{\sqrt{2 x^{2}}}=\lim _{x \rightarrow+\infty} \frac{3 x}{\sqrt{2} \sqrt{x^{2}}}=\lim _{x \rightarrow+\infty} \frac{3 x}{\sqrt{2}(x)}=\lim _{x \rightarrow+\infty} \frac{3}{\sqrt{2}}=\frac{3}{\sqrt{2}} \\
& \lim _{x \rightarrow-\infty} g(x)=\lim _{x \rightarrow-\infty} \frac{3 x}{\sqrt{2 x^{2}}}=\lim _{x \rightarrow-\infty} \frac{3 x}{\sqrt{2} \sqrt{x^{2}}}=\lim _{x \rightarrow-\infty} \frac{3 x}{\sqrt{2}(-x)}=\lim _{x \rightarrow-\infty} \frac{3}{-\sqrt{2}}=-\frac{3}{\sqrt{2}}
\end{aligned}
$$

2. Analyze the behavior on either side of the vertical asymptote $x=1$ of the function from Example 4.1.1, $f(x)=\frac{x^{2}-x-2}{3 x^{2}-9 x+6}=\frac{(x+1)(x-2)}{3(x-1)(x-2)}$. Then view the graph of $f$ near $x=1$.

Solution: Since $f$ grows without bound $(+\infty$ or $-\infty$ ) as $x$ approaches the asymptote, all we need to do is analyze the sign of $f$ on either side of and close to $x=1$. Because we are away from the hole at $x=2$, we could cancel the common factors in the limits. Now, as $x \rightarrow 1^{-}$, it follows that $x<1$, hence $x-1<0$. The opposite is true as $x \rightarrow 1^{+}$. Therefore,

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{(x+1)}{3(x-1)}\left(\frac{(+)}{(-)}\right)=-\infty \quad \text { and } \quad \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{(x+1)}{3(x-1)}\left(\frac{(+)}{(+)}\right)=+\infty .
$$

