Activity $4.2^{\text {+ }}$ - Horizontal and Vertical Asymptotes

FOR DISCUSSION: What is the purpose for analyzing one-sided limits?
Under what condition does a two-sided limit exist?
Under what conditions does a two-limit not exist?
How can we use limits to detect horizontal and vertical asymptotes?

1. When finding horizontal asymptotes of a function, we must set up and evaluate limits at infinity and negative infinity. Find the horizontal asymptotes, if any, of the given function. (HINT: You need only consider the terms with the highest powers in the numerator and denominator.)
$f(x)=\frac{9 x^{4}-6 x^{3}+2 x}{2 x^{4}+7 x-1}$
2. Compute the following limits at infinity. Be sure to write "lim" in each step until you actually compute the limit.
(a) $\lim _{x \rightarrow+\infty} \frac{5 x+x^{2}}{6-4 x^{2}}=$
(b) $\lim _{x \rightarrow-\infty} \frac{x^{5}-10 x^{2}}{3 x^{6}+x^{4}+1}=$
(c) $\lim _{x \rightarrow+\infty} \frac{2 x+x^{2}}{81-x}=$
(d) $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+1}}{3 x-4}=$

[^0]3. The function $f(x)=\frac{x^{3}+4 x^{2}+5 x+2}{x^{3}+4 x^{2}-3 x-18}=\frac{(x+1)^{2}(x+2)}{(x-2)(x+3)^{2}}$ has two vertical asymptotes, one at $x=2$, and one at $x=-3$. In order to analyze the behavior near vertical asymptotes, we must set up and evaluate left- and right-hand limits.
(a) Analyze the behavior of f near the vertical asymptote $x=2$ by computing the following limits. Write DNE for a limit that does not exist.
$\lim _{x \rightarrow 2^{-}} \frac{(x+1)^{2}(x+2)}{(x-2)(x+3)^{2}}=$
$\lim _{x \rightarrow 2^{+}} \frac{(x+1)^{2}(x+2)}{(x-2)(x+3)^{2}}=$
$\lim _{x \rightarrow 2} \frac{(x+1)^{2}(x+2)}{(x-2)(x+3)^{2}}=$
(b) Analyze the behavior of f near the vertical asymptote $x=-3$ by setting up and evaluating the appropriate limits (similar to Part (a)).
4. (a) Let $f(x)=\frac{15 x^{2}}{x^{2}-100}$. Compute f^{\prime} and list all points at which f^{\prime} is either zero or undefined. (Hint: Find the zeros of the numerator and the zeros of the denominator of f^{\prime}. The points in this list that are also in the domain of f are called "critical points.")
(b) Use the points from Part (a) and sign tests to find the intervals on which f is increasing and the intervals on which f is decreasing. Your answers must not include points where f is undefined.
(c) Determine the behavior of f on either side of the vertical asymptotes $x=10$ and $x=-10$, but try do so by analyzing your sign tests in Part (b).
\[

$$
\begin{array}{ll}
\lim _{x \rightarrow-10^{-}} \frac{15 x^{2}}{x^{2}-100}= & \lim _{x \rightarrow-10^{+}} \frac{15 x^{2}}{x^{2}-100}= \\
\lim _{x \rightarrow 10^{-}} \frac{15 x^{2}}{x^{2}-100}= & \lim _{x \rightarrow 10^{+}} \frac{15 x^{2}}{x^{2}-100}=
\end{array}
$$
\]

5. Use the graph of f shown below to find the given limits. Write DNE if a limit does not exist.
(a) $\lim _{x \rightarrow-5^{-}} f(x)=$ \qquad
(b) $\lim _{x \rightarrow-5^{+}} f(x)=$ \qquad
(c) $\lim _{x \rightarrow-5} f(x)=$ \qquad
(d) $\lim _{x \rightarrow-3^{-}} f(x)=$
(e) $\lim _{x \rightarrow-3^{+}} f(x)=$ \qquad
(f) $\lim _{x \rightarrow-3} f(x)=$ \qquad
(g) $\lim _{x \rightarrow-\infty} f(x)=$ \qquad
(h) $\lim _{x \rightarrow+\infty} f(x)=$ \qquad

6. Intuitively, a function is continuous if its graph has no breaks, jumps. or holes. In this part, we will prepare ourselves for the mathematical definition of continuity at a point.
(a) For each of the following functions, evaluate y (2), if possible. Write DNE if necessary.

$$
y(2)=
$$

\qquad

$y(2)=$

$$
y(2)=
$$

\qquad
(b) Based on your observations from Part (a), what do you think must be true about $x=2$ so that a function is continuous there? In other words, what must be true about $y(2)$?
(c) For each of the following functions, graphically evaluate the limits at $x=2$.

$\lim _{x \rightarrow 2^{-}} y(x)=$
$\lim _{x \rightarrow 2^{+}} y(x)=$
$\lim _{x \rightarrow 2} y(x)=$ \qquad

$$
\lim _{x \rightarrow 2^{-}} y(x)=
$$

$$
\lim _{x \rightarrow 2^{+}} y(x)=
$$

$$
\lim _{x \rightarrow 2} y(x)=
$$

\qquad

$$
\lim _{x \rightarrow 2^{+}} y(x)=
$$

$$
\lim _{x \rightarrow 2} y(x)=
$$

\qquad
(d) Based on your answers to Part (c), what do you think must be true about the two-sided limit at $x=2$ so that a function is continuous there?
(e) For the following functions, graphically evaluate $y(2)$ and the two-sided limit at $x=2$.

(b) Based on your answers to Part (e), what do you think must be true about the function value and the limit at $x=2$ so that a function is continuous there?

[^0]: ${ }^{\dagger}$ This activity is referenced in Lesson 4.3.

 * This activity has supplemental exercises.

