Homework 4.1 - Analyzing Rational Functions

1. (1 pt) alfredLibrary/AUCV/chapter4/lesson1/quiz/combine1petpg

Consider the expression $\frac{x^{2}}{x-3}-\frac{4}{x-4}$.
(a) Combine the two terms and enter the result in reduced form as a ratio of polynomials by eliminating all parentheses. (Hint: Find a common denominator.)

$$
\frac{x^{2}}{x-3}-\frac{4}{x-4}=
$$

\qquad
(b) Use long division to rewrite the answer to part (a) in proper form, $Q(x)+\frac{R(x)}{D(x)}$, where $D(x)=x^{2}-7 x+12$.

$$
\frac{x^{2}}{x-3}-\frac{4}{x-4}=-\quad x^{2}-7 x+12
$$

2. (1 pt) alfredLibrary/AUCV/chapter 4 /lesson $1 /$ quotient 5 pet pg

If $f(x)=\frac{\sqrt{x}-7}{\sqrt{x}+7}$, then by the quotient rule,
$f^{\prime}(x)=$ \qquad
3. (1 pt) alfredLibrary/AUCL/chapterd/lesson1/quotientapplication1pet.p A drug is injected into the bloodstream of a patient. The concentration (in milligrams per cubic centimeter) of the drug in the bloodstream t hours after the injection is given by

$$
C(t)=\frac{0.16 t}{t^{2}+6}
$$

(a) By the quotient rule, the rate of change of the drug concentration with respect to time after a half hour is
\qquad mg per cubic cm per hr.
(b) How fast is the drug concentration changing after 3 hours?
mg per cubic cm per hr
4. (1 pt) alfredLibrary/AUCVchapter 4 /hesson $1 /$ quotientapplication 2 pet \mathbf{I}_{F} The pressure on an object P in Pascals (Pa) is proportional to the temperature T in degrees Celsius (C) and inversely proportional to the volume V in cubic meters $\left(\mathrm{m}^{3}\right)$, where all three quantities depend on time t in seconds (s). That is,

$$
P(t)=\frac{T(t)}{V(t)}
$$

At time $t=8$ seconds, the temperature of the object is 66 C and changing at a rate of $2 \frac{C}{s}$. At this same time, the volume is $5 \mathrm{~m}^{3}$ and changing at the rate $-1 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$. By the quotient rule, the pressure on the object at $t=8$ seconds is changing at the rate of
$P^{\prime}(8)=$ \qquad
units
5. (1 pt) alfredLibrary/AUCI/chapter4/lesson1/graphanalysis22pet.pg

Let $f(x)=\frac{x^{2}-(-13) x+42}{x^{2}+5 x+6}$.
(a) The y-intercept is $y=$ \qquad
(b) The x-intercept(s) is/are $x=$ \qquad
(c) The vertical asymptote(s) is/are $x=$ \qquad
(d) To find the local extrema of f, we set $f^{\prime}(x)=0$ and solve for x. In this case,
$f^{\prime}(x)=$ \qquad
and we must find the zeros of the numerator. In reduced form (expanded without parentheses), we must ultimately solve the equation
$\square=0$.
Therefore, the local extrema are at $x=$ \qquad
(e) Use the information from parts (a)-(d) (and without a calculator!) to choose the correct graph of $f . ?$

