Examples 4.1 - Analyzing Rational Functions

1. Consider the rational function $f(x)=\frac{x^{2}-x-2}{3 x^{2}-9 x+6}$, and note that f is improper. Find each of the following:
(i) Domain
(ii) y-intercept
(iii) x-intercepts, holes, vertical asymptotes
(iv) A proper form using long division.

Solution: Factor the numerator and denominator to get $\frac{x^{2}-x-2}{3 x^{2}-9 x+6}=\frac{(x+1)(x-2)}{3(x-1)(x-2)}$.
(i) Since the denominator is zero at $x=1$ and $x=2$, we must exclude these numbers from the domain. We can express the domain in set notation as $\{x \mid x \neq 1,2\}$, or in interval notation as $(-\infty, 1) \cup(1,2) \cup(2,+\infty)$.
(ii) The y-intercept is $f(0)=-2 / 6=-1 / 3$.
(iii) According to the factorization, f has an x-intercept at $x=-1$, a vertical asymptote at $x=1$, and a hole at $x=2$. To find the y-coordinate of the hole, cancel the common $(x-2)$ and plug in $x=2$ to what remains. In this case, the hole is at the point $(2,1)$.
(iv) We can use long division to rewrite f as $f(x)=\frac{x^{2}-x-2}{3 x^{2}-9 x+6}=\frac{1}{3}+\frac{2 x-4}{3 x^{2}-9 x+6}$.
2. Repeat Parts (i), (ii), and (iii) from Part 1 for the function $g(x)=\frac{\sqrt{x-2}}{x^{2}-9}$. (Even though g is not a rational function, a similar analysis can be done.)

Solution: Factor the denominator to get $\frac{\sqrt{x-2}}{x^{2}-9}=\frac{\sqrt{x-2}}{(x+3)(x-3)}$.
(i) Since the denominator is zero at $x=3$ and $x=-3$, these numbers are not in the domain. Furthermore, the numerator requires that $x-2 \geq 0$, hence $x \geq 2$. After taking these restrictions into account, we can express the domain in set notation as $\{x \mid x \geq 2$ and $x \neq 3\}$ or in interval notation as $[2,3) \cup(3,+\infty)$.
(ii) There is no y-intercept since we cannot plug in $x=0$.
(iii) The only zero of the numerator is $x=2$, and the zeros of the denominator are $x=3$ and $x=-3$. It follows that g has an x-intercept at $x=2$ and a vertical asymptote at $x=3$. (Since $x=-3$ is well outside the domain of g, the graph cannot have an asymptote there.)

