Examples 4.1 – Analyzing Rational Functions

1. Consider the rational function $f(x) = \frac{x^2 - x - 2}{3x^2 - 9x + 6}$, and note that f is improper.

Solution: Factor the numerator and denominator to get $\frac{x^2 - x - 2}{3x^2 - 9x + 6} = \frac{(x+1)(x-2)}{3(x-1)(x-2)}$.

- (i) Domain:
- (ii) *y*-intercept:
- (iii) *x*-intercepts, holes, vertical asymptotes:
- (iv) A proper form using long division:

2. Repeat Parts (i), (ii), and (iii) from Part 1 for the function $g(x) = \frac{\sqrt{x-2}}{x^2-9}$. (Even though g is not a rational function, a similar analysis can be done.)

Solution: Factor the denominator to get $\frac{\sqrt{x-2}}{x^2-9} = \frac{\sqrt{x-2}}{(x+3)(x-3)}$.

- (i) Domain:
- (ii) *y*-intercept:
- (iii) *x*-intercepts, holes, vertical asymptotes: