Examples 4.1 - Analyzing Rational Functions

1. Consider the rational function $f(x)=\frac{x^{2}-x-2}{3 x^{2}-9 x+6}$, and note that f is improper.

Solution: Factor the numerator and denominator to get $\frac{x^{2}-x-2}{3 x^{2}-9 x+6}=\frac{(x+1)(x-2)}{3(x-1)(x-2)}$.
(i) Domain:
(ii) y-intercept:
(iii) x-intercepts, holes, vertical asymptotes:
(iv) A proper form using long division:
2. Repeat Parts (i), (ii), and (iii) from Part 1 for the function $g(x)=\frac{\sqrt{x-2}}{x^{2}-9}$. (Even though g is not a rational function, a similar analysis can be done.)

Solution: Factor the denominator to get $\frac{\sqrt{x-2}}{x^{2}-9}=\frac{\sqrt{x-2}}{(x+3)(x-3)}$.
(i) Domain:
(ii) y-intercept:
(iii) x-intercepts, holes, vertical asymptotes:

