Activity $4.1^{1+\ddagger}-$ Analyzing Rational Functions

FOR DISCUSSION: What is a rational function? How can you tell if it is proper or improper?
Briefly describe how to find the following for a rational function:
Domain, vertical asymptotes, x-intercepts, holes, y-intercept.

1. Let $f(x)=\frac{x^{3}-5 x^{2}+7 x-3}{x^{2}-1}$, and let $N(x)=x^{3}-5 x^{2}+7 x-3$ be the numerator of f.
(a) Verify that the numerator of f is zero at $x=1$. That, verify that $N(1)=0$.
(b) Since $x=1$ is a zero of $N(x)$, it follows that $(x-1)$ is a factor of $N(x)$. In particular, $N(x)=(x-1) g(x)$. Using long division, divide $N(x)$ by $(x-1)$ to find the quadratic $g(x)$.
(c) Now factor the quadratic $g(x)$ to get a complete factorization of the numerator, $N(x)$.

[^0](d) Rewrite $f(x)=\frac{x^{3}-5 x^{2}+7 x-3}{x^{2}-1}$ so that the numerator and denominator are completely factored. DO NOT cancel common factors!
$$
f(x)=\frac{x^{3}-5 x^{2}+7 x-3}{x^{2}-1}=
$$
(e) The domain of f is the set of all real numbers except $x=$ \qquad .
(f) The x-intercept(s) of f is/are at $x=$ \qquad .
(g) The y-intercept of f is at $y=$ \qquad .
(h) The vertical asymptote(s) of f is/are at $x=$ \qquad .
(i) The hole(s) in the graph of f is/are at $x=$ \qquad .
(j) Since the degree of the numerator of f is greater than or equal to the degree of the denominator, f is an improper rational function. Use long division to write $f(x)$ in proper form $f(x)=Q(x)+\frac{R(x)}{D(x)}$.
2. We want a rule for computing the derivative of a quotient function $y=\frac{f}{g}$. To find one, we rewrite the quotient as a product $\frac{f}{g}=f \cdot \frac{1}{g}$, and then use the product and reciprocal rules:
$$
\left(\frac{f}{g}\right)^{\prime}=\left(f \cdot \frac{1}{g}\right)^{\prime}=f^{\prime} \cdot \frac{1}{g}+f \cdot\left(\frac{1}{g}\right)^{\prime}
$$

Since the derivative of $1 / g$ requires the chain rule, we have

$$
\left(\frac{f}{g}\right)^{\prime}=f^{\prime} \cdot \frac{1}{g}+f \cdot\left(\frac{-1}{g^{2}} \cdot g^{\prime}\right)=\frac{f^{\prime}}{g}-\frac{f \cdot g^{\prime}}{g^{2}}
$$

Now we combine the two terms on the right using the common denominator g^{2} :

$$
\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime}}{g}-\frac{f \cdot g^{\prime}}{g^{2}}=\frac{f^{\prime} \cdot g}{g^{2}}-\frac{f \cdot g^{\prime}}{g^{2}}=\frac{f^{\prime} \cdot g-f \cdot g^{\prime}}{g^{2}}
$$

We have just derived the quotient rule. You must memorize this rule!

$$
\text { Quotient rule: }\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{[g(x)]^{2}}
$$

Note that the numerator is the same as the product rule except with a minus sign. Be careful not to mix up the terms in the numerator, otherwise the sign of the derivative will be incorrect.

Example: Compute the derivative of $f(x)=\frac{x^{3}-5 x^{2}+7 x-3}{x^{2}-1}$ using the quotient rule.

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(x^{3}-5 x^{2}+7 x-3\right)^{\prime}\left(x^{2}-1\right)-\left(x^{3}-5 x^{2}+7 x-3\right)\left(x^{2}-1\right)^{\prime}}{\left(x^{2}-1\right)^{2}} \\
& =\frac{\left(3 x^{2}-10 x+7\right)\left(x^{2}-1\right)-\left(x^{3}-5 x^{2}+7 x-3\right)(2 x)}{\left(x^{2}-1\right)^{2}} \\
& =\frac{x^{4}-10 x^{2}+16 x-7}{\left(x^{2}-1\right)^{2}}
\end{aligned}
$$

3. Use the quotient rule to find the derivative of each function.
(a) $y=\frac{x}{2 x-3}$
(b) $y=\frac{x^{2}+3 x}{x+4}$
(c) $y=\frac{x^{2}-2}{3 x^{2}-9 x+6}$
(d) $g(x)=\frac{\sqrt{x-2}}{x^{2}-9}$
4. Find the extrema, if any, of the function in 3(b).
5. A drug is injected into the bloodstream of a patient. The concentration (in $\mathrm{mg} / \mathrm{cm}^{3}$) of the drug in the bloodstream t hours after the injection is $C(t)=\frac{0.16 t}{t^{2}+6}$.
(a) What is the concentration of the drug in the bloodstream after 3 hours?
(b) Use the quotient rule to determine the rate of change of the drug concentration after t hours. Simplify your answer.
(c) Determine how fast the concentration of the drug is changing after 3 hours.

[^0]: ${ }^{1}$ This activity contains new content.
 ${ }^{\dagger}$ This activity is referenced in Lesson 4.1.
 \# This activity has supplemental exercises.

