Homework 3.6 - Integrals of Polynomials

1. (1 pt) alfredLibrary/AUCV/chapter3/esson6/antil.pg

Evaluate the indefinite integral using the power rule for integration:

$$
\int 5 s^{4}-5 s^{5} d s=
$$

\qquad

2. (1 pt) alfredLibrary/AUCU/chapter3/lesson6/anti4-pg

Evaluate the indefinite integral by writing each term as a power function and then using the power rule:

$$
\int \frac{4}{x^{5}}-7 \sqrt[3]{x^{2}} d x=
$$

\qquad

3. ($\mathbf{1}$ t) alfredLibrary/AUCV/chapter3lesson6TVP1pet.pg

Recall that $\int f(x) d x$ represents the infinite family of antiderivatives of f, each identified by its constant of integration, C. Given a point in the plane, we could find the constant C that identifies the unique member of the family passing through the given point.

Consider the function $f(x)=\frac{2}{x^{3}}-\frac{6}{x^{5}}$, and suppose $F(x)$ is the antiderivative of $f(x)$ such that $F(1)=0$ (i.e., the graph passes through the point $(1,0)$). Then
$F(x)=$ \qquad

4. (1 pt) aliredLibrary/AUCI/chapter3/esson6/anti4pet.pg

Use the fundamental theorem of calculus to evaluate the definite integral.
$\int_{3}^{9} \frac{10}{\sqrt{x}} d x=-\quad=$
5. (1 pt) alfredLibrary/AUCU/chapter3/esson6/definite11pet.pg Suppose an object is moving along a line with velocity $v(t)=-t^{2}+7 t-12$ miles per hour. Find the displacement and the total distance traveled by the object during the time interval $[2,11]$.

Displacement $=$ \qquad miles

Total distance traveled $=$ \qquad miles

HINT: To compute the total distance traveled, you must integrate the speed, which is $|v(t)|$. To do this, you must find the zeros of v on the interval $[2,11]$, and then find the intervals on which the velocity is positive or negative by performing a sign test. By the definition of absolute value, $|v(t)|=v(t)$ when the velocity is positive, and $|v(t)|=-v(t)$ when velocity is negative. It may help to view a graph.

