Quiz 3.5 - Piecewise Functions

1. (1 point) -alfredLibrary/AUCI/chapter3/esson5/quiz/question2.pgAt which of the following could a function fail to be differentiable? There may be more than one correct answer, so check all that apply.

- A. A corner.
- B. A vertical tangent.
- C. A jump.
- D. A hole.

2. (1 point) -alfredLibrary/AUCI/chapter3/lesson5/quiz/question2pet.pg

(a) Recall, a function is not continuous at a point if its graph has a break, jump, or hole at that point. Use the graph above to find the x-values for which the function is NOT continuous. Enter your answer as a comma-separated list: $x=$ \qquad
(b) Recall, a function is not differentiable at a point if it is
not continuous at that point, or if its graph has a sharp change in direction or an infinite slope at that point. Use the graph above to find the x-values for which the function is NOT differentiable. Enter your answer as a comma-separated list: $x=$ \qquad
Note: You can click on the graph to enlarge the image.
3. (1 point)—alfredLibrary/AUCI/chapter3/lesson5/quiz/limits88pet.pg.

Let $f(x)= \begin{cases}4 x-3, & \text { if } x \leq 3 \\ -7 x+b, & \text { if } x>3\end{cases}$
Find the correct value of b that makes the function $f(x)$ continuous everywhere:
$b=$ \qquad
(HINT: The two pieces of the graph must connect at $x=3$.)
Now for fun, try to graph $f(x)$.
4. (1 point)-alfredLibrary/AUCI/chapter3/lesson5/quiz/limits99pet.pg.

Let $f(x)= \begin{cases}x^{2}-4 x+3, & \text { if } x \leq-2 \\ a x+b, & \text { if } x>-2\end{cases}$
Find a and b such that the function $f(x)$ is differentiable everywhere.
$a=$
$b=$
\qquad
\qquad
(HINT: First use differentiability to find a. Then use continuity to find b.)

