Examples 3.5 - Piecewise Functions

1. Discuss the continuity and differentiability of the function $f(x)=\left\{\begin{array}{ll}x^{2}-6 x+6, & \text { if } x \leq 2 \\ x+1, & \text { if } x>2\end{array}\right.$.

Solution: Note that the continuity and differentiability of f ultimately depends on what is happening at $x=2$. For continuity, we need to check whether or not the function values are the same from either side of $x=2$. Formally, we must check the left-hand limit (a "limit from the left") and the right-hand limit (a "limit from the right"):

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}\left(x^{2}-6 x+6\right)=-2 \quad \text { and } \quad \lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}(x+1)=3 .
$$

Since these values do not agree, f is not continuous at $x=2$. This fact implies that the function is not differentiable at $x=2$.
2. Discuss the continuity and differentiability of the function $g(x)=\left\{\begin{array}{ll}2 x+6, & \text { if } x<-2 \\ 1, & \text { if }-2 \leq x<1 . \\ 2-x, & \text { if } x \geq 1\end{array}\right.$.

Solution: The domain of g has break points at $x=-2$ and at $x=1$. The one-sided limits at $x=-2$ are $\lim _{x \rightarrow-2^{-}}(2 x+6)=2$ and $\lim _{x \rightarrow-2^{+}}(1)=1$, so g is neither continuous nor differentiable at $x=-2$. The one-sided limits at $x=1$ are $\lim _{x \rightarrow 1^{-}}(1)=1$ and $\lim _{x \rightarrow 1^{+}}(2-x)=1$. Since g is defined at $x=1$, it is continuous there, but this does not mean it is differentiable. We must check derivatives on either side of $x=1$:

$$
\lim _{x \rightarrow 1^{-}} g^{\prime}(x)=\lim _{x \rightarrow 1^{-}}(0)=0 \quad \text { and } \quad \lim _{x \rightarrow 1^{+}} g^{\prime}(x)=\lim _{x \rightarrow 1^{+}}(-1)=-1 .
$$

Since the slopes on either side of $x=1$ are different, g has a sharp corner at $x=1$, thus it is not differentiable there.
3. Find numbers a and b so that $f(x)=\left\{\begin{array}{ll}x^{2}-6 x+6, & \text { if } x \leq 2 \\ a x+b, & \text { if } x>2\end{array}\right.$ is differentiable everywhere.

Solution: We must have $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)$ and $\lim _{x \rightarrow 2^{-}} f^{\prime}(x)=\lim _{x \rightarrow 2^{+}} f^{\prime}(x)$. For the first condition, we have $\lim _{x \rightarrow 2^{-}}\left(x^{2}-6 x+6\right)=-2$ and $\lim _{x \rightarrow 2^{+}}(a x+b)=2 a+b$, and for the second, $\lim _{x \rightarrow 2^{-}}(2 x-6)=-2$ and $\lim _{x \rightarrow 2^{+}}(a)=a$. Therefore, $a=-2$ and $b=2$, and the function $f(x)=\left\{\begin{array}{ll}x^{2}-6 x+6, & \text { if } x \leq 2 \\ -2 x+2, & \text { if } x>2\end{array}\right.$ is differentiable (and continuous) everywhere.

