Examples 3.5 - Piecewise Functions

1. Discuss the continuity and differentiability of the function $f(x)=\left\{\begin{array}{ll}x^{2}-6 x+6, & \text { if } x \leq 2 \\ x+1, & \text { if } x>2\end{array}\right.$.

Solution: We must check the left-hand limit (a "limit from the left") and the right-hand limit (a "limit from the right"):
2. Discuss the continuity and differentiability of the function $g(x)=\left\{\begin{array}{ll}2 x+6, & \text { if } x<-2 \\ 1, & \text { if }-2 \leq x<1 . \\ 2-x, & \text { if } x \geq 1\end{array}\right.$.

Solution: We must check one-sided limits:

3. Find numbers a and b so that $f(x)=\left\{\begin{array}{ll}x^{2}-6 x+6, & \text { if } x \leq 2 \\ a x+b, & \text { if } x>2\end{array}\right.$ is differentiable everywhere.

Solution: We need $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)$, and $\lim _{x \rightarrow 2^{-}} f^{\prime}(x)=\lim _{x \rightarrow 2^{+}} f^{\prime}(x)$.

