1. (1 pt) alfredLibrary/AUCU/chapter3/lesson $4 / q u i z /$ product 0 pet.pg If $h(x)=\left(4+7 x+7 x^{2}\right)\left(-7 x+5 x^{5}-5 x^{7}\right)$ then $h(x)=$ $f(x) g(x)$ where
$f=$ and $g=$ Using the product rule $h^{\prime}(x)=$ \qquad * \qquad $+$ \qquad *
2. (1 pt) alfredLibrary/AUCV/chapter3/lesson4/quiz/product3pet.pg According to the product rule, if $y=x^{6} \sqrt{x^{2}+5 x+10}$,
then $y^{\prime}=$ \qquad
(Don't forget to use the chain rule when you differentiate the radical factor.)

3. (1 pt) alfredLibrary/AUCU/chapter3/lesson4/quiz/product2pet.pg

 Let $f(x)=\frac{12 x^{2}+3 x}{7 x-8}$. Rewrite f as a product, then use the product and chain rules to compute $f^{\prime}(x)$. (We will eventually derive a "quotient rule" for the derivative of a quotient function.)$$
f^{\prime}(x)=
$$

\qquad

