Lesson 3.4 - Products of Functions

Recall, the derivative of a sum or difference of two functions is the sum or difference of the derivatives. This property does not hold for products, as we demonstrate with a simple example. Let $f(x)=x$ and $g(x)=x^{2}$, so that $f(x) \cdot g(x)=x \cdot x^{2}=x^{3}$. On one hand, the derivative of the product is $(f(x) \cdot g(x))^{\prime}=3 x^{2}$, and on the other hand, the product of the derivatives is $f^{\prime}(x) \cdot g^{\prime}(x)=2 x$. Thus, the derivative of a product is not the product of the derivatives. If an example is not convincing enough, then notice that the units will never match:

$$
\text { Units for }(f(x) \cdot g(x))^{\prime}=\frac{(\text { units for } f) \cdot(\text { units for } g)}{(\text { units for } x)}
$$

$$
\text { Units for } f^{\prime}(x) \cdot g^{\prime}(x)=\frac{(\text { units for } f)}{(\text { units for } x)} \cdot \frac{(\text { units for } g)}{(\text { units for } x)}=\frac{(\text { units for } f) \cdot(\text { units for } g)}{(\text { units for } x)^{2}}
$$

Let f and g be functions defined at x such that $f^{\prime}(x)$ and $g^{\prime}(x)$ exist (i.e., the tangent lines to f and g exist at x), and let $\Delta x \neq 0$. Then the average rate of change of $f \cdot g$ is

$$
\begin{aligned}
\frac{\Delta(f \cdot g)}{\Delta x} & =\frac{f(x+\Delta x) g(x+\Delta x)-f(x) g(x)}{\Delta x} \\
& =\frac{f(x+\Delta x) g(x+\Delta x)-f(x) g(x)+f(x) g(x+\Delta x)-f(x) g(x+\Delta x)}{\Delta x} \\
& =\frac{(f(x+\Delta x) g(x+\Delta x)-f(x) g(x+\Delta x))+(f(x) g(x+\Delta x)-f(x) g(x))}{\Delta x} \\
& =\frac{(f(x+\Delta x)-f(x)) g(x+\Delta x)}{\Delta x}+\frac{f(x)(g(x+\Delta x)-g(x))}{\Delta x} \\
& =\frac{f(x+\Delta x)-f(x)}{\Delta x} \cdot g(x+\Delta x)+f(x) \cdot \frac{g(x+\Delta x)-g(x)}{\Delta x} \\
& =\frac{\Delta f}{\Delta x} \cdot g(x+\Delta x)+f(x) \cdot \frac{\Delta g}{\Delta x}
\end{aligned}
$$

As $\Delta x \rightarrow 0$, the left-hand side approaches $(f \cdot g)^{\prime}(x)$, and the first and second terms on the righthand side approach $f^{\prime}(x) \cdot g(x)$ and $f(x) \cdot g^{\prime}(x)$, respectively. Therefore, we have derived a rule for the rate of change of the product $f \cdot g$ for every x at which f and g have derivatives:

$$
\begin{array}{lll}
\text { Product rule: } & \text { Leibniz notation: } & \frac{d}{d x}(f \cdot g)=\frac{d f}{d x} \cdot g(x)+f(x) \cdot \frac{d g}{d x} \\
& \text { Prime notation: } & (f \cdot g)(x)=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)
\end{array}
$$

