
  Lesson 3.4 – Products of Functions 

Recall, the derivative of a sum or difference of two functions is the sum or difference of the 

derivatives.  This property does not hold for products, as we demonstrate with a simple example.  

Let xxf )(  and 2)( xxg  , so that 32)()( xxxxgxf  .  On one hand, the derivative of the 

product is 23))()(( xxgxf  , and on the other hand, the product of the derivatives is

xxgxf 2)()(  .  Thus, the derivative of a product is not the product of the derivatives.   If an 

example is not convincing enough, then notice that the units will never match: 
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Let f and g be functions defined at x such that )(xf   and )(xg  exist (i.e., the tangent lines to f 

and g exist at x), and let Δx ≠ 0.  Then the average rate of change of gf  is 
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As Δx → 0, the left-hand side approaches )()( xgf  , and the first and second terms on the right-

hand side approach )()( xgxf   and )()( xgxf  , respectively.  Therefore, we have derived a rule 

for the rate of change of the product gf   for every x at which  f  and g have derivatives: 

 

 
Product rule: Leibniz notation: 

 

  
       

  

  
            

  

  
 

   Prime notation:                                  


