Examples 3.4 - Products of Functions

1. Use the product rule to find the derivative of each of the following functions.
(a) $y=\left(2 x^{3}-3 x\right)\left(x^{2}+5 x-10\right)$
(b) $y=x^{2} \sqrt{1-x^{3}}$
(c) $y=\frac{x^{2}-3}{9 x+2}$

Solutions: Note that problems (b) and (c) require both the product and chain rules.
(a) $y=\left(2 x^{3}-3 x\right)\left(x^{2}+5 x-10\right) \rightarrow y^{\prime}=\left(6 x^{2}-3\right)\left(x^{2}+5 x-10\right)+\left(2 x^{3}-3 x\right)(2 x+5)$
(b) $y=x^{2} \sqrt{1-x^{3}} \rightarrow y^{\prime}=2 x \sqrt{1-x^{3}}+x^{2}\left(\frac{1}{2 \sqrt{1-x^{3}}} \cdot\left(-3 x^{2}\right)\right)$
(c) For a quotient, we can rewrite the denominator as a factor raised to the negative one power and then apply the product rule:

$$
y=\frac{x^{2}-3}{9 x+2}=\left(x^{2}-3\right) \cdot(9 x+2)^{-1} \rightarrow y^{\prime}=(2 x) \cdot(9 x+2)^{-1}+\left(x^{2}-3\right)(-1)(9 x+2)^{-2}(9)
$$

2. Suppose the selling price P per unit of an item depends on x, the quantity sold. The revenue from the sale of x units at price P per unit is $R(x)=x P(x)$.
(a) Suppose that when 500 units are sold, the price is $\$ 5.49$ per unit. Find $R(500)$.
(b) Suppose that when 500 units are sold, the price is dropping by $\$ 0.001$ per unit. Find the rate of change of revenue when 500 units are sold.

Solution:

(a) We are given that $P(500)=5.49$, so $R(500)=500 \cdot P(500)=500 \cdot 5.49=2745$. This means that the revenue from the sale of 500 items is $\$ 2,745$.
(b) Since the revenue function is a product, its rate of change is $R^{\prime}(x)=1 \cdot P(x)+x \cdot P^{\prime}(x)$. We are given $P^{\prime}(500)=-0.001$, so

$$
\begin{aligned}
R^{\prime}(500) & =P(500)+500 \cdot P^{\prime}(500) \\
& =5.49+500 \cdot(-0.001) \\
& =4.99
\end{aligned}
$$

Therefore, when 500 units are sold, the revenue is increasing by $\$ 4.99$ per unit. As a linear approximation, this means that the sale of 501 units will yield revenue of about $\$ 2,745+\$ 4.99=\$ 2,749.99$.

