Activity 3.4[‡] – Products of Functions

FOR DISCUSSION: Explain the product rule in your own words.

1. Use the product rule to find the derivative of each function.

(a)
$$f(x) = (6x - 7)(x^2 + 2x - 2)$$

(b)
$$g(x) = (2x-3)^5(5x^2+2x)$$
 (HINT: Remember the chain rule for the first factor.)

(c)
$$s(t) = t^3 \sqrt{8t+2}$$

2. Practice the chain and product rules by finding y' and y'' for each function.

(a)
$$y = (x^2 - 3x + 1)^{10}$$

 $y' =$

[‡] This activity has supplemental exercises.

(b)
$$y = \sqrt[3]{7 - 2x^2}$$

 $y' =$

3. There are two values for x at which the graph of the function $f(x) = x^{5/7} (x-9)^2$ has a horizontal tangent line (derivative is zero), and there is one value for x at which the graph of f has a vertical tangent line (derivative is infinite). Find all three values.

HINT: Use the product rule; note that the terms of f' have common factors (x - 9) and $x^{-\frac{2}{7}}$

- 4. The revenue *R* from a new product at the end of day *t* after its release is the product of the sales *S* on that day and the set price *P* for that day. That is, R(t) = S(t)P(t).
 - (a) Write down a formula for the rate of change of the revenue at the end of day t with units.

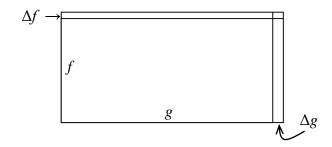
R'(t) =

(b) At the end of the 60th day, the sales were 1290 units and decreasing at a rate of 15 units per day. On the same day, the price was 199 dollars per unit and increasing at a rate of 2 dollars per unit per day. Use Part (a) to compute the rate of change of revenue at the end of day 60.

5. (OPTIONAL) Let f and g be functions such that the derivatives exist at x. That is, if $\Delta x \neq 0$, then

$$\lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \frac{df}{dx} \quad \text{and} \quad \lim_{\Delta x \to 0} \frac{\Delta g}{\Delta x} = \frac{dg}{dx}$$

and in particular, $\Delta g \to 0$ as $\Delta x \to 0$. Intuitively, we can think of f and g as the sides of an initial rectangle. Suppose an increase of Δx causes increases in f and g by the amounts Δf and Δg . This produces a final rectangle having sides $(f + \Delta f)$ and $(g + \Delta g)$.



(a) The area of the initial rectangle is $f \cdot g$. Find the area of the final rectangle. Your answer should have four terms.

$$(f + \Delta f)(g + \Delta g) =$$

(b) Find the net change in area of the two rectangles. Your answer should have three terms.

$$\Delta(f \cdot g) =$$

(c) Divide your answer to Part (b) by Δx to get the average rate of change in area.

$$\frac{\Delta(f \cdot g)}{\Delta x} =$$

- (d) One of the terms in your answer to Part (c) should be $\frac{\Delta f}{\Delta x} \cdot \Delta g$. Justify why this term goes to zero as $\Delta x \to 0$.
- (e) Deduce the Leibniz form of the product rule by letting $\Delta x \rightarrow 0$.