Activity 3.4^{\ddagger} - Products of Functions

FOR DISCUSSION: Explain the product rule in your own words.

1. Use the product rule to find the derivative of each function.
(a) $f(x)=(6 x-7)\left(x^{2}+2 x-2\right)$
(b) $g(x)=(2 x-3)^{5}\left(5 x^{2}+2 x\right)$
(HINT: Remember the chain rule for the first factor.)
(c) $s(t)=t^{3} \sqrt{8 t+2}$
2. Practice the chain and product rules by finding y^{\prime} and $y^{\prime \prime}$ for each function.
(a) $y=\left(x^{2}-3 x+1\right)^{10}$

$$
y^{\prime}=
$$

$$
y^{\prime \prime}=
$$

[^0](b) $y=\sqrt[3]{7-2 x^{2}}$
$$
y^{\prime}=
$$
$$
y^{\prime \prime}=
$$
3. There are two values for x at which the graph of the function $f(x)=x^{5 / 7}(x-9)^{2}$ has a horizontal tangent line (derivative is zero), and there is one value for x at which the graph of f has a vertical tangent line (derivative is infinite). Find all three values.
HINT: Use the product rule; note that the terms of f^{\prime} have common factors $(x-9)$ and $x^{-2 / 7}$
4. The revenue R from a new product at the end of day t after its release is the product of the sales S on that day and the set price P for that day. That is, $R(t)=S(t) P(t)$.
(a) Write down a formula for the rate of change of the revenue at the end of day t with units.
$$
R^{\prime}(t)=
$$
(b) At the end of the $60^{\text {th }}$ day, the sales were 1290 units and decreasing at a rate of 15 units per day. On the same day, the price was 199 dollars per unit and increasing at a rate of 2 dollars per unit per day. Use Part (a) to compute the rate of change of revenue at the end of day 60 .
5. (OPTIONAL) Let f and g be functions such that the derivatives exist at x. That is, if $\Delta x \neq$ 0 , then
$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x}=\frac{d f}{d x} \quad \text { and } \quad \lim _{\Delta x \rightarrow 0} \frac{\Delta g}{\Delta x}=\frac{d g}{d x}
$$
and in particular, $\Delta g \rightarrow 0$ as $\Delta x \rightarrow 0$. Intuitively, we can think of f and g as the sides of an initial rectangle. Suppose an increase of Δx causes increases in f and g by the amounts Δf and Δg. This produces a final rectangle having sides $(f+\Delta f)$ and $(g+\Delta g)$.

(a) The area of the initial rectangle is $f \cdot g$. Find the area of the final rectangle. Your answer should have four terms.
$$
(f+\Delta f)(g+\Delta g)=
$$
(b) Find the net change in area of the two rectangles. Your answer should have three terms.
$$
\Delta(f \cdot g)=
$$
(c) Divide your answer to Part (b) by Δx to get the average rate of change in area.
$$
\frac{\Delta(f \cdot g)}{\Delta x}=
$$
(d) One of the terms in your answer to Part (c) should be $\frac{\Delta f}{\Delta x} \cdot \Delta g$. Justify why this term goes to zero as $\Delta x \rightarrow 0$.
(e) Deduce the Leibniz form of the product rule by letting $\Delta x \rightarrow 0$.

[^0]: * This activity has supplemental exercises.

