Lesson 3.3 - Composite Functions

Using basic rules for differentiation, we can find the rates of change of functions like $z(y)=\sqrt{y}$ and $y(x)=400 x^{2}+2500$. Sometimes, however, we must compute the rate of change of more complicated functions such as $z(x)=\sqrt{400 x^{2}+2500}$. Since this function is "composed" of a radical on the "outside" and a polynomial on the "inside," we are not able to apply the basic rules. We need a new rule for finding rates of change of these so-called composite functions.

If the outputs of a function $y=g(x)$ are in the domain of a function $z=f(y)$, then we can form the composite function $z=f(g(x))=(f \circ g)(x)$. Think of a composite as a chain of functions:

Sometimes it also helps to think of g as the inside function and f as the outside function so that $f(g(x))=\operatorname{OUTSIDE}(\operatorname{INSIDE}(x))$. In most cases, the "inside" function will appear inside parentheses, a radical, a denominator, or an exponent. Intuitively, a change in x produces a change in y, which in turn produces a change in z. The combined effect is that a change in x produces a change in z, but how, exactly? Let Δx be a nonzero change in x, let Δy be a nonzero change in y produced by Δx, and let Δz be a nonzero change in z produced by Δy. Then the average rate of change in the composite $z=(f \circ g)(x)$ with respect to x is

$$
\frac{\Delta z}{\Delta x}=\frac{\Delta z}{\Delta y} \cdot \frac{\Delta y}{\Delta x}
$$

As $\Delta x \rightarrow 0$, the left-hand side approaches $\frac{d z}{d x}$, and it seems reasonable to suspect that the righthand side approaches the product $\frac{d z}{d y} \cdot \frac{d y}{d x}$.

Chain rule (for differentiating composite functions): Let $y=g(x)$ and suppose z is a composite function $=f(y)=f(g(x))=\operatorname{OUTSIDE}(\operatorname{INSIDE}(x))$. The rate of change of z is as follows:

Leibniz notation:	$\frac{d z}{d x}=\frac{d z}{d y} \cdot \frac{d y}{d x}$
Prime notation:	$(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) \cdot g(x)$
Intuitively:	$\frac{d \text { oUTSIDE }}{d x}=\frac{d \text { oUTSIDE }}{d \text { INSIDE }} \cdot \frac{d \text { INSIDE }}{d x}$

