Homework 3.3 – Composite Functions

1. (1 pt) alfredLibrary/AUCI/chapter3/lesson3/quiz/chain1p.pg

Consider the following statements:

- (a) An environmental study in a community shows that the level of a certain pollutant in the air increases by 0.2 parts per million for every 10 people added to the population.
- (b) Census data for the community shows that the population of the community is increasing by 15 people per month.
- (c) Therefore, the pollutant is increasing at a rate of 0.3 parts per million per month.

If pollutant level is measured by the variable L in parts per million (ppm), the population is measured by the variable Pin heads (h), and time is measured by t in months (mon), then interpret each of the statements above in Leibniz derivative notation:

2. (1 pt) alfredLibrary/AUCI/chapter3/lesson3/quiz/chain0pet.pg If $y = -7(x^2 + 8x + 6)^3$, then by the chain rule,

$$\frac{dy}{dx} =$$
 $\left($ $\right)$ $\left($ $\right)$

3. (1 pt) alfredLibrary/AUCI/chapter3/lesson3/chain9p.pg If $f(x) = (x^3 + 2x + 3)^2$,

then f'(x) =______

4. (1 pt) alfredLibrary/AUCI/chapter3/lesson3/chain11pet.pg

$$f(x) = -3\sqrt[20]{(3x^2 + 2x - 2)^{19}} = -3(3x^2 + 2x - 2)$$

Generated by @WeBWorK, http://webwork.maa.org, Mathematical Association of America

then by the chain rule,

$$\frac{df}{dx} = - \left(- \right) - \left(- \right)$$

(b) If

$$g(x) = \frac{-3}{\sqrt[20]{(3x^2 + 2x - 2)^{19}}} = -3(3x^2 + 2x - 2) \quad \underline{\hspace{1cm}}$$

then by the chain rule,

$$\frac{dg}{dx} = \quad (\quad --- \quad) \quad -- \quad (\quad --- \quad)$$

5. (1 pt) alfredLibrary/AUCI/chapter3/lesson3/chain12pet.pg Recall the square root rule: If $y = \sqrt{x}$, then $y' = \frac{1}{2\sqrt{x}}$.

By the chain rule, if $y = \sqrt{g(x)}$, then $y' = \frac{1}{2\sqrt{g(x)}} \cdot g'(x) =$

$$\frac{g'(x)}{2\sqrt{g(x)}}$$

Use this fact to find the derivative of $y = \sqrt{4x^2 + 3x + 7}$. (In other words, try to use the square root rule instead of the power

 $\frac{y'=___}{6. \ (1 \ pt) \ alfred Library/AUCI/chapter3/lesson3/chain8pet.pg}$ Recall the reciprocal rule: If $y=\frac{1}{x}$, then $y'=-\frac{1}{x^2}$.

By the chain rule, if $y = \frac{1}{\rho(x)}$, then $y' = -\frac{1}{\rho(x)^2} \cdot g'(x) =$

$$-\frac{g(x)}{g(x)^2}$$

Use this fact to find the derivative of $y = \frac{1}{4x^3 - 3}$. (In other words, try to use the reciprocal rule instead of the power rule.)