Examples 3.3 – Composite Functions

- 1. Suppose that the population of a town is $g(x) = 400x^2 + 2500$ people, where x is years after 2000, and that $f(g) = \sqrt{g}$ is the level of CO₂ pollution in the air in parts per million, where g is the population.
 - (a) Complete the table of data.

Solution:

x	$g(x) = 400x^2 + 2500$	$f(g(x)) = \sqrt{g(x)}$
2		
5		

(b) Write down a model (with units) that represents the CO₂ level as a function of time. Find the rate of change model (with units), and then find how quickly the CO₂ level was changing in 2007.

Solution:

2. Find the derivative of each of the following:

Solution:

(a) $y = \left(x^2 - 3x\right)^5$

(b)
$$y = (f(x))^5$$

(c)
$$y = \left(1 - 20x + 100x^4\right)^{\frac{1}{3}}$$

(d)
$$y = \frac{7}{6} \left(x^3 - 2x \right)^{-\frac{1}{5}}$$