Lesson 3.2 - Polynomial Functions

A polynomial function of degree \boldsymbol{n} has the form

$$
y=f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0},
$$

where $a_{n} \neq 0$, the coefficients are real numbers, and the exponents are nonnegative integers. The term with the highest power is the leading term, and the coefficient of the leading term is the leading coefficient. Linear, quadratic, cubic, and nonzero constant functions are all polynomials of degree one, two, three, and zero, respectively. The zero function $f(x)=0$ has no degree. The square root function is an example of a nonpolynomial function since the power on x is not a nonnegative integer.
Domain: The set of all real numbers.
Graph: Everywhere continuous and differentiable
y-intercept (initial value): Set $x=0$ and solve for y. In this case, $y(0)=f(0)=a_{0}$. \boldsymbol{x}-intercepts (roots, zeros): Set $y=f(x)=0$ and solve for x. This may require factoring, grouping, guess-and-check, and/or long division.

Derivative: By properties and the power rule, we can differentiate a polynomial term-by-term.
Extrema, saddle points, and intervals of increase/decrease: The graph of a polynomial function may or may not have a highest or lowest point, but it may have local extrema. In addition, the graph may or may not have a saddle point. Since the graph of a polynomial has a horizontal tangent line at each local extremum and saddle point, set $y^{\prime}=f^{\prime}(x)=0$ and solve for x. These values are the critical points. Test the derivative for sign on either side of and between each critical point. A positive derivative means that the graph is increasing, and a negative derivative means that the graph is decreasing. A sign change means that the graph has an extremum, and no sign change means that the graph has a saddle point.

Inflection points: By Activity 2.4, set $y^{\prime \prime}=f^{\prime \prime}(x)=0$ and solve for x. Test the second derivative for sign on either side of and between each of these zeros. A sign change means the graph has an inflection point; otherwise the graph has no inflection point. (Certain non-polynomial functions may have changes in concavity at points where the first or second derivatives do not exist!)

End behavior: Refers to how a graph behaves as x tends toward infinity or negative infinity. Do function values get bigger and bigger positive, bigger and bigger negative, or do they settle on a finite number? Limits at infinity are used to analyze end behavior:

Limit at infinity: $\lim _{x \rightarrow+\infty} f(x) \quad$ Limit at negative infinity: $\lim _{x \rightarrow-\infty} f(x)$
Note: For polynomials, the leading term dictates the end behavior.

