Activity $3.2^{1 \sharp}$ - Polynomial Functions

FOR DISCUSSION: What is a polynomial function?
How do we find the extrema and inflection points (if any) of a polynomial? What do we mean by end behavior?

1. Compute each of the following for the polynomial function $f(x)=-x^{8}+2 x^{5}-18 x^{2}+x$.
(a) $f^{\prime}(x)=$
(b) $f^{\prime \prime}(x)=$
(c) $f^{\prime \prime \prime}(x)=$
2. The equation of motion of an object in rectilinear motion is $s(t)=t^{3}-20 t$, where s is in meters and t is in seconds. Assume that $t \geq 0$ and that movement to the right is positive. Each answer requires units.
(a) The velocity v as a function of t is $v(t)=$
(b) The acceleration a as a function of t is $a(t)=$
(c) Find the velocity and acceleration at $t=2$ seconds.

$$
v(2)=\quad a(2)=
$$

(d) At $t=2$ seconds, is the object moving to the left or to the right? Is the object speeding up or slowing down?

[^0]3. The end behavior of a polynomial describes its behavior as the variable approaches infinity or negative infinity. It is determined by the term with the highest power.
(a) Determine the end behavior of $f(x)=3 x^{2}-12 x^{6}$.
\[

$$
\begin{aligned}
\lim _{x \rightarrow+\infty}\left(3 x^{2}-12 x^{6}\right) & =\lim _{x \rightarrow+\infty}\left(-12 x^{6}\right) \\
& =-12 \cdot \lim _{x \rightarrow+\infty} x^{6} \\
& = \\
\lim _{x \rightarrow-\infty}\left(3 x^{2}-12 x^{6}\right) & =
\end{aligned}
$$
\]

(b) Determine the end behavior of $g(x)=-13 x^{5}+5 x^{2}$. Set up and evaluate limits similar to Part (a).
4. Let $f(x)=-x^{3}+3 x^{2}+18 x$.
(a) Find the zeros (x-intercepts) of f.
(b) Find f^{\prime} and use it to find the critical points and relative extrema of f. (Show a sign test.)
(c) Find $f^{\prime \prime}$ and use it to find the inflection point of f. (Show a sign test.)
(d) Use limits at infinity and negative infinity to investigate the end behavior of f.
5. (OPTIONAL) Although we will not formally define continuity until Lesson 4.3, you should have a good understanding of it based on our experience so far. We will use our intuition about continuity to discover an important theorem called the Intermediate Value Theorem.
(a) The points $(1,4)$ and $(5,1)$ are shown on the given set of axes. Connect the points with a continuous function. Call it $f(x)$.
(b) Choose any number c between $f(1)=4$ and $f(5)=1$ on the y-axis. Sketch the horizontal line $y=c$ on the same set of axes. Does the line intersect the graph of f at least once?

(c) Choose a point of intersection on the graphs of f and $y=c$. Mark and estimate the x-coordinate of the point you chose. Call this estimate x. What is $f(x)$?
(d) On the given set of axes, try to sketch a graph that begins at $(1,4)$, ends at $(5,1)$, but does not intersect the line $y=2$. What property does your graph fail to have? In other words, what property would a graph require to guarantee that it intersects the horizontal line $y=c$ for any value c between $f(1)$ and $f(5)$?

(e) Now piece together the Intermediate Value Theorem:

If f is a \qquad function defined on the closed interval $[a, b]$, and c is any number between
\qquad and \qquad , then there exists a number x between \qquad and \qquad such that \qquad .

Note that the Intermediate Value Theorem does not tell us how to find the number x, only that at least one such number exists.
(f) Suppose f is a continuous function such that $f(2)=3$ and $f(4)=-2$ (Make a sketch!). According to the Intermediate Value Theorem, what must f have at least one of in the interval [2, 4]?

[^0]: ${ }^{1}$ This activity contains new content.

 * This activity has supplemental exercises.

