Homework 3.1 – Power Functions

1. (1 pt) alfredLibrary/AUCI/chapter3/lesson1/rationalexponent1pet.pg (a) Rewrite f(x) as a power function, and then find its derivative using the power rule.

$$f(x) = -5 \cdot \sqrt[9]{x^{19}} = \underline{\qquad} x \underline{\qquad}$$
$$\frac{df}{dx} = \underline{\qquad} x \underline{\qquad}$$

(b) Rewrite g(x) as a power function, and then find its derivative using the power rule.

$$g(x) = -4 \cdot \sqrt[2]{x^{16}} = \underline{\qquad} x \underline{\qquad}$$
$$\frac{dg}{dx} = \underline{\qquad} x \underline{\qquad}$$

2. (1 pt) alfredLibrary/AUCI/chapter3/lesson1/quiz/power3pet.pg

Compute the following derivatives.

(a)
$$\frac{d}{dx}(x^{9/6}) =$$

Generated by @WeBWorK, http://webwork.maa.org, Mathematical Association of America

(b)
$$\frac{d}{dx}(x^{-8/9}) =$$

3. (1 pt) alfredLibrary/AUCI/chapter3/lesson1/power7pet.pg
(a) If
$$f(r) = \frac{5}{9r^3} + \frac{5}{7r^5}$$
, then $f'(3) =$ _____.

(b) If
$$g(t) = 7t^{3/5} - 8t^{3/7}$$
, then $g'(1) =$ _____

4. (1 pt) alfred Library/AUCI/chapter3/lesson1/power9pet.pg (a) If $f(x) = 4 + \frac{5}{x} + \frac{6}{x^2}$, then f'(x) = ______. (b) If $g(x) = 3x^4\sqrt{x} + \frac{-4}{x^2\sqrt{x}}$, then g'(x) = ______.

5. (1 pt) alfredLibrary/AUCl/chapter3/lesson1/power21pet.pg The function $f(x) = 9x + 3x^{-1}$ has one local minimum and one local maximum. (To visualize this, graph f on the interval [-9/3, 9/3].)

(a) The function has a local minimum at x = _____. The local minimum is _____.

(b) The function has a local maximum at x = _____. The local maximum is _____.