Examples 3.1 - Power Functions

1. Verify the power rule for $y=x^{m}$, where m is a positive integer.

Solution: Observe that

$$
\begin{aligned}
\left(x-x_{0}\right)\left(x^{m-1}+x_{0} x^{m-2}+\cdots+x_{0}{ }^{m-2} x+x_{0}{ }^{m-1}\right)=x^{m} & +x_{0} x^{m-1}+\cdots+x_{0}{ }^{m-1} x \\
& -x_{0} x^{m-1}-\cdots-x_{0}{ }^{m-1} x-x_{0}{ }^{m} \\
= & x^{m}-x_{0}{ }^{m}
\end{aligned}
$$

Therefore, $\frac{x^{m}-x_{0}{ }^{m}}{x-x_{0}}=x^{m-1}+x_{0} x^{m-2}+\cdots+x_{0}{ }^{m-2} x+x_{0}{ }^{m-1}$, and it follows that

$$
\left.\frac{d}{d x}\left(x^{m}\right)\right|_{x=x_{0}}=\lim _{x \rightarrow x_{0}} \frac{x^{m}-x_{0}^{m}}{x-x_{0}}=\lim _{x \rightarrow x_{0}}\left(x^{m-1}+x_{0} x^{m-2}+\cdots+x_{0}^{m-2} x+x_{0}^{m-1}\right)=m x_{0}^{m-1}
$$

2. Compute each of the following derivatives:

Solution:

(a) $\frac{d}{d x}\left(x^{5}\right)=$
(b) $\frac{d}{d x}\left(\frac{1}{x}\right)=$
(c) $\frac{d}{d x}\left(\sqrt[3]{x^{2}}\right)=$
(d) $\frac{d}{d x}\left(\frac{2}{x \sqrt{x}}-\frac{3}{\sqrt[3]{x}}\right)=$
3. According to Newton's law of universal gravitation, two masses m_{1} and m_{2} (in kg) at a distance of r meters apart attract each other with a force of $F(r)=G \frac{m_{1} m_{2}}{r^{2}}$ Newtons, where G is the gravitational constant. Find $F^{\prime}(r)$.

Solution:

