Activity 3.1¹[‡] – Power Functions

FOR REVIEW:Give three interpretations of the word derivative.What does the indefinite integral of a function represent?What does the definite integral of a function on an interval represent?Explain the FTC (for constant and linear functions) in your own words.

FOR DISCUSSION: What is a power function? What is the power rule?

1. Compute the derivative of each function. Rewrite your answers without negative or fractional powers. Use prime notation for Parts (a)-(d) and Leibniz notation for Parts (e)-(h).

(a)
$$y = 10$$
 (e) $y = \frac{2x^{-3}}{7}$

(b)
$$y = -x$$
 (f) $y = 3x^{10}$

(c)
$$y = \frac{x}{3}$$
 (g) $y = -2x^{\frac{4}{5}}$

(d)
$$y = 0.5x^2$$
 (h) $y = \frac{4}{\sqrt[3]{x^2}}$

¹ This activity contains new content.

[‡] This activity has supplemental exercises.

2. The square-root and reciprocal functions are very important and arise frequently. Compute their derivatives, and rewrite your answers without negative or fractional powers.

(a)
$$y = \sqrt{x}$$
 (b) $y = \frac{1}{x}$

NOTE: You should **memorize** these derivatives:

$$\frac{d}{dx}\left(\sqrt{x}\right) = \frac{1}{2\sqrt{x}} \qquad \qquad \frac{d}{dx}\left(\frac{1}{x}\right) = -\frac{1}{x^2}$$

3. (a) Suppose
$$f(r) = \frac{4}{3r^2} + \frac{r^5}{2r^6}$$
. Compute $f'(r)$ and $f'(2)$.

(b) Suppose
$$g(t) = 5t^2 \sqrt{t} - \frac{t}{\sqrt[3]{t^2}}$$
. Compute $g'(t)$ and $g'(1)$.

- 4. Consider the function $f(x) = 3x + \frac{12}{x}$.
 - (a) Compute the derivative of f and perform a number-line sign test. Note that zero is not in the domain of f, so you must mark it on your number line and test on either side of it.

- (b) The function f has one local minimum. Find where the minimum occurs (the x-value), and compute the minimum value (the y-value).
- (a) The function f has one local maximum. Find where the maximum occurs (the *x*-value), and compute the maximum value (the *y*-value).
- 5. We say that a function is **not differentiable** at x if x is not in the domain of the derivative function. In other words, if there is no well-defined slope or tangent line at x.
 - (a) Find all numbers x at which $y = \frac{1}{x}$ is not differentiable.

(b) Find all numbers x at which $y = \sqrt{x}$ is not differentiable.

- 6. (OPTIONAL) We will prove the power rule in Chapter 5, but for now, we can verify the derivatives of $y = \sqrt{x}$ and $y = \frac{1}{x}$ using the limit definition of the derivative function.
 - (a) By definition, if $y = \sqrt{x}$, then $y' = \lim_{\Delta x \to 0} \frac{\sqrt{x + \Delta x} \sqrt{x}}{\Delta x}$. Rationalize the numerator by multiplying the numerator and denominator by $\sqrt{x + \Delta x} + \sqrt{x}$ and simplifying.

$$\frac{d}{dx}\left(\sqrt{x}\right) = \lim_{\Delta x \to 0} \frac{\sqrt{x + \Delta x} - \sqrt{x}}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sqrt{x + \Delta x} - \sqrt{x}}{\Delta x} \cdot \frac{\left(\sqrt{x + \Delta x} + \sqrt{x}\right)}{\left(\sqrt{x + \Delta x} + \sqrt{x}\right)}$$

=

(b) By definition, if $y = \frac{1}{x}$, then $y' = \lim_{\Delta x \to 0} \frac{\frac{1}{x + \Delta x} - \frac{1}{x}}{\Delta x}$. Clear the fractions in the numerator by multiplying the numerator and denominator by $x(x + \Delta x)$ and simplifying.

$$\frac{d}{dx}\left(\frac{1}{x}\right) = \lim_{\Delta x \to 0} \frac{\left(\frac{1}{x + \Delta x} - \frac{1}{x}\right)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\left(\frac{1}{x + \Delta x} - \frac{1}{x}\right)}{\Delta x} \cdot \frac{x(x + \Delta x)}{x(x + \Delta x)}$$

=