
         A 

 

   Lesson 2.6 – Integrals of Linear and Quadratic Functions   

 In this chapter, we found that the derivative of a quadratic is linear, and the derivative of a cubic 

is quadratic.  It follows that the antiderivatives of a linear function are quadratic and the 

antiderivatives of a quadratic function are cubic: 
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We know from Lesson 1.4 that the net area bounded by a constant function on an interval is the 

same as the net change in any of its linear antiderivatives on that interval:  

     
  

  

         

            

 

We stated this result as the Fundamental Theorem of Calculus for constant functions.  Now we 

will show that the theorem is true for linear functions.  Quadratics will need to wait, however. 
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Observation 2:  Let A denote the net (signed) area bounded by f on ],[ 10 xx .    From geometry, 

the area of this trapezoid is   xbxxxmxbmxbmxA  )()()( 012
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Therefore, the net area bounded by a linear function on an interval is the same as the net change 

in any of its quadratic antiderivatives on that interval.   

 

 

 Fundamental Theorem of Calculus (for linear functions):  If         is a linear 

function, then the net (signed) area bounded by the graph of   
     on the interval         is  

equal to the net change in any quadratic antiderivative       on        .  That is, 
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