Homework 2.6 - Integrals of Linear and Quadratic Functions

1. (1 pt) alfredLibrary/AUCV/chapter2/lesson6/question21pet.pg

Evaluate the following indefinite integrals:
(a) $\int(-1 t+5) d t=$ \qquad
(b) $\int\left(5 t^{2}+6 t+8\right) d t=$ \qquad
2. (1 pt) alfredLibrary/AUCL/chapter2/lesson6/question31pet.pg

Evaluate the following definite integrals using the Fundamental Theorem of Calculus:
(a) $\int_{-9}^{-8}(6 u-4) d u=\square=\square$
(b) $\int_{-2}^{4}(-4 u+8) d u=\square=\square$
3. (1 pt) alfredLibrary/AUCI/chapter2/lesson6/defintegraloflinear4p-pg A population of cattle is increasing at a rate of $P^{\prime}(t)=600+70 t$ cows per year, where t is measured in years. By how much does the population increase between the 5th and the 8th years?

Total Increase $=$ \qquad cows
4. ($\mathbf{3}$ pts) alfredLibrary/AUCI/chapter 2 /lesson6/rectilinearmotion1pet.p All of your answers require units.

A stone is thrown straight up from the edge of a roof, 175 feet above the ground, at a speed of 16 feet per second. Recall that the acceleration due to gravity is -32 feet per second squared.
(a) Find the equation for the object's velocity using the relationship $v=\int-32 d t$, remembering that the initial velocity is 16 feet per second.
(b) Find the equation for the object's position above the ground using the relationship $s=\int v d t$, remembering that the initial position is 175 feet.
(c) How high is the stone after 2 seconds? \qquad
(d) What is the velocity of the stone after 2 seconds?
(e) At what time does the stone hit the ground? (i.e., when is its position zero?) \qquad
(f) What is the velocity of the stone when it hits the ground?
(g) The net change in the stone's position from time 0 to time 2 is

$$
s(-)-s(-)
$$

\qquad
5. (1 pt) alfredLibrary/AUCI/chapter2/lesson6/riemannuists1pet.pg The function $W^{\prime}(t)=20 t^{3} \frac{\mathrm{~L}}{\mathrm{hr}}$ measures the rate at which water is flowing through a pipe at time $t \mathrm{hr}$. Although we have not proved it yet, the Fundamental Theorem works for quadratic and cubic functions. That is, the net amount of water that has flowed through the pipe from $t=2.5 \mathrm{hr}$ to $t=6.1 \mathrm{hr}$ is given by

Since we do not yet know an antiderivative W of the cubic function W^{\prime}, we will estimate the integral using left-hand and right-hand approximations. Divide the interval $[2.5,6.1]$ into 4 subintervals of equal width $\Delta t=$ \qquad

The left-hand approximation is given by
$L_{4}=$
$-+$
\qquad
— +

(Include units in your final answer.)
The right-hand approximation is given by

$$
\begin{aligned}
& R_{4}=(\\
& -+ \\
& -+ \\
& -+ \\
& \overline{)}-=
\end{aligned}
$$

(Include units in your final answer.)

By the way, the exact answer is 6727.61 L . How close are the left- and right-hand approximations to the exact answer?

