Quiz 2.5 - Linear Approximation

1. (1 pt) alfredLibrary/AUCL/chapter2/lesson5/quiz/question9pet.pg If $y=2 x^{3}-9 x^{2}-9 x$, then $\frac{d^{2} y}{d x^{2}}=$ \qquad
(Complete this problem on paper first so you can practice writing Leibniz notation.)
2. (1 pt) alfredLibrary/AUCV/chapter2/esson5/quiz/question5.pg If the point $P=(1,-8)$ is on the graph of a function, and the slope of the graph at P is -8 , then the slope-intercept form of the tangent line at P is $y=$ \qquad
3. (1 pt) alfredLibrary/AUCV/chapter2/essonS/quiz/question2pet.pg

In the figure above, the function f is graphed in blue along with a tangent line and a secant line, both passing through through the point $(x, f(x))$. Using a horizontal disance a, we measure off a portion of the tangent line of length T and a portion of the secant line of length S. In the notation that we use for calculus,
the length Δx is equal to

- A. a
- B. b
- C. c
- D. S
- E.T
- F. a+b
- G. a+c
- H. b+c
the length $d x$ is equal to
- A. a
- B. b
- C. c
- D. S
- E. T
- F. a+b
- G. a+c
- H. b+c
the length Δy is equal to
- A. a
- B. b
- C. c
- D. S
- E. T
- F. a+b
- G. a+c
- H. b+c
and the length $d y$ is equal to
- A. a
- B. b
- C. c
- D. S
- E. T
- F. a+b
- G. a+c
- H. b+c

4. (1 pt) alfredLibrary/AUCI/chapter2/esson5/quiz/question4.pg Let $y=-5 x^{2}$.

If $x=7$ and $\Delta x=0.85$, then $\Delta y=$ \qquad and $d y=$ \qquad

