Lesson 2.5 - Linear Approximation

Suppose P and Q are distinct points on the graph of f. Then the slope of the secant line between P and Q is an approximation of the slope of the tangent line at P, if one exists. In symbols, $\frac{\Delta y}{\Delta x} \approx f^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}$. Since $f^{\prime}(x)$ is a slope, it is convenient to express it in "rise-over-run" form without having to use limit notation. Because we already use Δx and Δy to denote the run and rise, respectively, of the secant line on the interval between P and Q, we use the differentials $d x$ and $d y$ to denote the run and rise in the tangent line on the interval. It follows that the slope of the tangent line is $\frac{d y}{d x}$, a rise over run! This notation is called Leibniz notation.

Leibniz notation for derivative functions:

$$
\frac{d y}{d x}=f^{\prime}(x), \frac{d^{2} y}{d x^{2}}=f^{\prime \prime}(x), \frac{d^{3} y}{d x^{3}}=f^{\prime \prime \prime}(x), \text { etc. }
$$

Leibniz notation for derivative at a point:

$$
\left.\frac{d y}{d x}\right|_{x=x_{0}}=f^{\prime}\left(x_{0}\right)
$$

x_{0}

Differential operator notation: $\frac{d}{d x}(f(x))=f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$
In the same way that we used the slope of a secant line to approximate the slope of a tangent line, we can use a tangent line to approximate a nearby function value. This technique is called linear approximation, and it works because a well-behaved graph will resemble its tangent line if we zoom in close enough (Recall Activity 2.1). The tangent line at the point $P=\left(x_{0}, f\left(x_{0}\right)\right)$ has slope $f^{\prime}\left(x_{0}\right)$ and point-slope equation

$$
y-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \quad \text { or } \quad y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

By moving along this tangent line at P, we can approximate an unknown function value near P, say at $Q=\left(x_{1}, f\left(x_{1}\right)\right)$, as

$$
f\left(x_{1}\right) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right)
$$

Linear approximation can be used to analyze error in physical measurements. Suppose the exact value of some quantity is x_{0}, but we measure it as x. That is, the error in measurement is Δx. If we use a function f to perform a calculation with the erroneous x, then the error in $f(x)$, which we are calling Δy, is propagated:

Propagated error: $\Delta y \approx d y=f^{\prime}(x) d x=f^{\prime}(x) \Delta x$
Relative (percentage) error: $\frac{\Delta y}{y} \approx \frac{d y}{y}=\frac{f^{\prime}(x) d x}{f(x)}$

