Homework 2.5 - Linear Approximation

1. (1 pt) alfredLibrary/AUCU/chapter2/lesson5/leibniz2pet.pg NOTE: Units are required in the answer blank on the right side of each equal sign. Complete this problem on paper first so you can practice writing Leibniz notation.

The position s (in miles) of a car at time t (in hours) is given by

$$
s(t)=-8 t^{3}-5 t^{2}+5 t-4
$$

(a) The velocity v of the car is given by the formula
\qquad
(b) The velocity of the car at time $t=6.5$ hours is

(c) The acceleration of the car is given by the formula
(d) The acceleration of the car at 6.5 hours is

2. (1 pt) alfredLibrary/AUCL/chapter2/esson5/differential2p.pg Recall that
$\Delta y=y(x+\Delta x)-y(x)$ and $d y=y^{\prime}(x) d x$.
Let $y=2 x^{2}$.
(a) Find Δy when $x=2$ and $\Delta x=0.4$:
$\Delta y=$ \qquad
(b) Find the differential $d y$ when $x=2$ and $d x=0.4$:
$d y=$ \qquad
3. (1 pt) alfredLibrary/AUCI/chapter2/lesson5/errorprop2p.pg

The radius of a circular disk is measured as 24 cm with a maximum error in measurement of $\pm 0.1 \mathrm{~cm}$. Use differentials to estimate the propagated error and the relative error in the calculated area of the disk.

Propagated error $\approx \pm$ \qquad square centimeters
Relative error (as a unitless decimal) $\approx \pm$ \qquad
4. (1 pt) alfredLibrary/AUCI/chapter2/esson5/error 10 pet.pg

An oil tank in the form of a right circular cylinder of radius of r has a height h of 37 meters and a volume of $V=37 \pi r^{2}$. The radius is measured as 12 meters with a maximum possible error of ± 0.1 meters. Estimate the propogated and relative errors in the calculated volume of the tank.

Propagated error $\approx \pm$ \qquad (Your answer requires units.)

Relative error (as a percentage) $\approx \pm$ \qquad

