Examples 2.5 - Linear Approximation

1. Use Leibniz notation to find the first three derivatives of $y=11 x^{2}-4 x+7$.

Solution: We have $\frac{d y}{d x}=22 x-4, \frac{d^{2} y}{d x^{2}}=22$, and $\frac{d^{3} y}{d x^{3}}=0$.
2. Use differential operator notation to find the slope of the graph of $f(t)=-t^{3}+2 t$ at $t=1$.

Solution: We have $\frac{d}{d t}\left(-t^{3}+2 t\right)_{t=1}=\left.\left(-3 t^{2}+2\right)\right|_{t=1}=-1$.
3. Find an equation for the tangent line to $y=\frac{1}{2} x^{2}+3$ at $x=1$. Use your calculator to view the function and the tangent line on the same screen. (Use the window $[-2,4] \times[0,8]$.)

Solution: A point on the tangent line is the point on graph of $y=\frac{1}{2} x^{2}+3$ at $x=1$, which is
(1,3.5). The slope of the tangent line is $\left.\frac{d y}{d x}\right|_{x=1}=\left.(x)\right|_{x=1}=1$. Therefore, the point-slope form of the tangent line is $y-3.5=1(x-1)$, and the slope-intercept form is $y=x+2.5$.
4. Let $y=3 x^{2}$. Find Δy and $d y$ when $x=1$ and $\Delta x=0.1$.

Solution: The quantity Δy is the change in $y=3 x^{2}$ from $x=1$ to $x+\Delta x=1.1$. That is, $\Delta y=3(1.1)^{2}-3(1)^{2}=0.63$.

The quantity $d y$ is the change in the tangent line to $y=3 x^{2}$ at $x=1$ from $x=1$ to $x+\Delta x=1.1$. Since $\frac{d y}{d x}=6 x$, the differential $d y=6 x d x=6(1)(0.1)=0.6$.
5. The side length of a cube is measured as $x=25 \mathrm{~cm}$, with possible error in measurement $\Delta x= \pm 0.01 \mathrm{~cm}$. The measurement is then used to calculate the volume $V=x^{3}$. Find the propagated and relative errors in the volume calculation.

Solution: For propagated error, $\Delta V \approx d V=3 x^{2} d x=3(25)^{2}(\pm 0.01)= \pm 18.75$. That is, the volume calculation will be within $\pm 18.75 \mathrm{~cm}^{3}$ of the actual value.

For the relative error, $\frac{\Delta V}{V} \approx \frac{d V}{V}=\frac{3 x^{2} d x}{x^{3}}=\frac{3(25)^{2}(\pm 0.01)}{25^{3}}= \pm 0.0012$, which is within $\pm 0.12 \%$ of actual value.

